Bean Validation

jim stafford

Fall 2022 v2021-05-13: Built: 2022-12-07 06:16 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Background
3. Dependencies
4. Declarative Constraints
4.1. Data Constraints
4.2. Common Built-in Constraints
4.3. Method Constraints
5. Programmatic Validation
5.1. Manual Validator Instantiation
5.2. Inject Validator Instance
5.3. Customizing Injected Instance
5.4. Review: Class with Constraint
5.5. Validate Object
5.6. Validate Method Calls
5.7. Identify Method Using Java Reflection
5.8. Programmatically Check for Parameter Violations
5.9. Validate Method Results
6. Method Parameter Naming
6.1. Add -parameters to Java Compiler Command
6.2. Add Custom ParameterNameProvider
6.3. ParameterNameProvider
6.4. Named Parameters
6.5. Determining Parameter Name
7. Graphs
7.1. Graph Non-Traversal
7.2. Graph Traversal
8. Groups
8.1. Custom Validation Groups
8.2. Applying Groups
8.3. Skipping Groups
8.4. Applying Groups
9. Multiple Groups
9.1. Example Class with Different Groups
9.2. Validate All Supplied Groups
9.3. Short-Circuit Validation
9.4. Override Default Group

© 00 00 00 N 90 N oo g g1 ok W ok e

NN NN N R B R B R R |) |l) Rl)l) |) e,
W N R = R © O 0 00 00 I O O B h W Wb NR O O

10. Spring Integration

10.1. Validated Component

10.2. ConstraintViolationException

10.3. Successful Validation

10.4. Liskov Substitution Principle

10.5. Disabling Parameter Constraint Override
10.6. Spring Validated Group(s)

10.7. Spring Validated Group(s) Example

11. Custom Validation

11.1. Constraint Interface Definition
11.2. @Documented Annotation

11.3. @Target Annotation

11.4. @Retention

11.5. @Repeatable

11.6. @Constraint

11.7. @MinAge-specific Properties
11.8. Constraint Implementation Class
11.9. Constraint Implementation Type Examples
11.10. Constraint Initialization

11.11. Constraint Validation

11.12. Custom Violation Messages

12. Cross-Parameter Validation

12.1. Cross-Parameter Annotation
12.2. @SupportedValidationTarget
12.3. Method Call Correctness Validation

12.4. Constraint Validation

13. Web API Integration

13.1. Vanilla Spring/AOP Validation
13.2. ConstraintViolationException Not Handled

13.3. ConstraintViolationException Exception Advice

13.4. ConstraintViolationException Mapping Result

13.5. Controller Constraint Validation
13.6. MethodArgumentNotValidException

13.7. MethodArgumentNotValidException Custom Mapping

13.8. @PathVariable Validation
13.9. @PathVariable Validation Result
13.10. @RequestParam Validation

13.11. @RequestParam Validation Violation Response

13.12. Non-Client Errors
13.13. Service Method Error

13.14. Violation Incorrectly Reported as Client Error

24
24
25
25
26
26
27
27
29
29
30
30
31
32
33
34
34
35
35
36
36
38
38
38
39
39
41
41
41
42
43
43
44
44
45
46
46
47
47
48
48

13.15. Checking Violation Source
13.16. Internal Server Error Correctly Reported
13.17. Service-detected Client Errors
13.18. Payload
13.19. Exception Handler Checking Payloads
13.20. Internal Violation Exception Handler Results
14. JPA Integration
15. Mongo Integration
15.1. Validating Saves
15.2. ValidatingMongoEventListener
15.3. Other AbstractMongoEventListener Events
15.4. MongoMappingEvent
16. Patterns / Anti-Patterns
16.1. Data Tier Validation
16.2. Use case-specific Validation
16.3. Anti: Validation Everywhere

17. Summary

48
49
50
50
51
51
53
54
54
35
35
56
57
57
57
58
60

Chapter 1. Introduction

Well-designed software components should always be designed according to a contract of what is
required of inputs and outputs; constraints; or pre-conditions and post-conditions. Validation of
inputs and outputs need to be performed at component boundaries. These conditions need to be
well-advertised but ideally the checking of these conditions should not overwhelm the functional
aspects of the code.

Manual Validation

public PersonPocDTO createPOC(PersonPocDTO personDT0) {
if (personDT0==null) {
throw new BadRequestException("createPOC.person: must not be null");
} else if (StringUtils.isNotBlank(personDTO.getId())) {
throw new InvalidInputException("createPOC.person.id: must be null");

. @

@ business logic possibly overwhelmed by validation concerns and actual checks

This lecture will introduce working with the Bean Validation API to implement declarative and
expressive validation.

Declarative Bean Validation API

(PocValidationGroups.CreatePlusDefault.class)
public PersonPocDTO createPOC(

PersonPocDTO personDT0); @

@ conditions well-advertised and isolated from target business logic

1.1. Goals

The student will learn:

* to add declarative pre-conditions and post-conditions to components using the Bean Validation
API

to define declarative validation constraints
* to implement custom validation constraints

* to enable injected call validation for components

to identify patterns/anti-patterns for validation

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1. add Bean Validation to their project

[g S Y
N I T =

© ®©® N e ok LW D

add declarative data validation constraints to types and method parameters
configure a ValidatorFactory and obtain a Validator

programmatically validate an object

programmatically validate parameters to and response from a method call
inspect constraint violations

enable Spring/AOP validation for components

implement a custom validation constraint

implement a cross-parameter validation constraint

configure Web API constraint violation responses

. configure Web API parameter validation
. configure JPA validation

. configure Spring Data Mongo Validation

identify some patterns/anti-patterns for using validation

Chapter 2. Background

Bean Validation is a standard that originally came out of Java EE/SE as JSR-330 (1.0) in the 2009
timeframe and later updated with JSR-349 (1.1) in 2013 and JSR-380 (2.0) in 2017. It was meant to
simplify validation —reducing the chance of error and to reduce the clutter of validation within the
business code that required validation. The standard is not specific any particular tier (e.g., Ul, Web,
Service, DB) but has been integrated into several of the individual frameworks. t

Implementations include:

e Hibernate Validator

» Apache BVal

Hibernate Validator was the original and current reference implementation and used within Spring
Boot today.

[1] "Bean Validation specification”, Gunnar Morling, 2017

https://beanvalidation.org/
https://beanvalidation.org/2.0-jsr380/spec/
http://hibernate.org/validator/
http://bval.apache.org/
https://beanvalidation.org/2.0-jsr380/spec/
https://beanvalidation.org/2.0-jsr380/spec/

Chapter 3. Dependencies

To get started with validation in Spring Boot—we add a dependency on spring-boot-starter-
validation.

Validation Dependency

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>
</dependency>

That will bring in the validation reference implementation from Hibernate and an implementation
for regular expression validation constraints.

Validation Transient Dependencies

[INFO] +- org.springframework.boot:spring-boot-starter-validation:jar:2.7.0:compile
[INFO] | +- org.apache.tomcat.embed:tomcat-embed-el:jar:9.0.63:compile @
[INFO] | \- org.hibernate.validator:hibernate-validator:jar:6.2.3.Final:compile @

[INFO] | +- jakarta.validation:jakarta.validation-api:jar:2.0.2:compile @
[INFO] | +- org.jboss.logging:jboss-logging:jar:3.4.3.Final:compile
[INFO] | \- com.fasterxml:classmate:jar:1.5.1:compile

@ overall Bean Validation API
@ Bean Validation API reference implementation from Hibernate

® regular expression implementation for regular expression constraints

Chapter 4. Declarative Constraints

At the core of the Bean Validation API are declarative constraint annotations we can place directly
into the source code.

4.1. Data Constraints

The following snippet shows a class with a property that is required to be not-null when valid.

Java Class with Validation Constraint Annotation(s)
import javax.validation.constraints.NotNull;
class AClass {

private String aValue;

Constraints do not Actively Prevent Invalid State

The constraint does not actively prevent the property from being set to an invalid

o value. Unlike with the Lombok annotations, no class code is written as a result of
the validation annotations. The constraint will identify whether the property is
currently valid when validated. The validating caller can decide what to do with
the invalid state.

4.2. Common Built-in Constraints

You can find a list of built-in constraints in the Bean Validation Spec and the Hibernate Validator
documentation. A few common ones include:

Table 1. Common Built-in Validator Constraints

¢ @Null, @NotNull ¢ @Size(min, max) - value limit

* @NotBlank, @NotEmpty * @Positive, @Negative

* @Past, @Future * @PositiveOrZero, @NegativeOrZero
 @Min, Max - collection size * @Pattern(regex)

Additional constraints are provided by:

* Hibernate Additional Constraints (e.g., @CreditCardNumber)

* Java Bean Validation Extension (JBVExt) (e.g. @Alpha, @IsDate, @IPv4)

We will take a look at how to create a custom constraint later in this lecture.

https://beanvalidation.org/2.0-jsr380/spec/#builtinconstraints
https://docs.jboss.org/hibernate/validator/6.1/reference/en-US/html_single/#section-builtin-constraints
https://docs.jboss.org/hibernate/validator/6.1/reference/en-US/html_single/#section-builtin-constraints
https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#validator-defineconstraints-hv-constraints
https://github.com/nomemory/java-bean-validation-extension

4.3. Method Constraints

We can provide pre-condition and post-condition constraints on methods and constructors.

The following snippet shows a method that requires a non-null and valid parameter and will return
a non-null result. Constraints for input are placed on the individual input parameters. Constraints
on the output (as well as cross-parameter constraints) are placed on the method. The @Validated
annotation is added to components to trigger Spring to enable validation for injected components.

Java Method Declaration with Parameter

import javax.validation.Valid;
import org.springframework.validation.annotation.Validated;

®

public class AService {

@
public String aMethod(AClass aParameter) { @
return ...;

}

@ method requires a non-null parameter with valid content
@ the result of the method is required to be non-null

® @Validated triggers Spring’s use of the Bean Validation API to validate the call

Null Properties Are Considered @Valid Unless Explicitly Constrained with @NotNull

a
Q It is a best practice to consider a null value as valid unless explicitly constrained
with @NotNull.

We will eventually show all this integrated within Spring, but first we want to make sure we
understand the plumbing and what Spring is doing under the covers.

Chapter 5. Programmatic Validation

To work with the Bean Validation API directly, our initial goal is to obtain a standard
javax.validation.Validator instance.

Programmatic Validation Requires Validator
import javax.validation.Validator;

Validator validator;
This can be obtained manually or through injection.

5.1. Manual Validator Instantiation
We can obtain a Validator using one of the Validation builder methods to return a ValidatorFactory.

The following snippet shows the builder providing an instance of the default factory provider, with
the default configuration. We will come back to the configure() method later. If we have no
configuration changes, we can simplify with a call to buildDefaultValidatorFactory(). The Validator
instance is obtained from the ValidatorFactory. Both the factory and validator instances are thread-

safe.

Standard javax.validation.Validator Interface

import javax.validation.Validation;

ValidatorFactory myValidatorFactory = Validation.byDefaultProvider()

.configure()
//configuration commands

.buildValidatorFactory(); @
//ValidatorFactory myValidatorFactory = Validation.buildDefaultValidatorFactory();

Validator myValidator = myValidatorFactory.getValidator(); @

@ factory and validator instances are thread-safe, initialized during bean construction, and used
during instance methods

5.2. Inject Validator Instance

With the validation starter dependency comes a default Validator. For components, we can simply
have it injected.

Injecting Validator

private Validator validator;

5.3. Customizing Injected Instance

If we want the best of both worlds and have some customizations to make, we can define a @Bean
factory to replace the AutoConfigure and return our version of the Validator instead.

Custom Validator @Bean Factory

®
public Validator validator() {
return Validation.byDefaultProvider()
.configure()
//configuration commands
.buildValidatorFactory()
.getValidator();

® A custom Validator @Bean within the application will override the default provided by Spring
Boot

5.4. Review: Class with Constraint

The following validation example(s) will use the following class with a non-null constraint on one
of its properties.

Example Class with Constraint

public class AClass {

private String aValue;

5.5. Validate Object

The most straight forward use of the validation programmatic API is to validate individual objects.
The object to be validated is supplied and a Set<ConstraintViolation> is returned. No exceptions are
thrown by the Bean Validation API itself for constraint violations. Exceptions are only thrown for
invalid use of the API and to report violations within frameworks like Contexts and Dependency
Injection (CDI) or Spring Boot.

The following snippet shows an example of using the validator to validate an object with at least
one constraint error.

Validate Object

//given - @NotNull aProperty set to null by ctor
AClass invalidAClass = new AClass();
//when - checking constraints

https://www.baeldung.com/java-ee-cdi
https://www.baeldung.com/java-ee-cdi

Set<ConstraintViolation<AClass>> violations = myValidator.validate(invalidAClass);®

violations.stream().forEach(v-> log.info("field name={}, value={}, violated={}",
v.getPropertyPath(), v.getInvalidValue(), v.getMessage()));

//then - there will be at least one violation

then(violations).isNotEmpty(); @

@ programmatic call to validate object
@ non-empty return set means violations where found
The result of the validation is a Set<ConstraintViolation>. Each constraint violation identifies the:

* path to the field in error * invalid value

* an error message * descriptors for the annotation and validator

The following shows the output of the example.

Validate Object Text Output

field name=aValue, value=null, violated=must not be null

Specific Property Validation
We can also validate a value against the definition of a specific property

» validateProperty(T object, propertyName,)

e validateValue(Class<T> beanType, propertyName,)

5.6. Validate Method Calls

We can also validate calls to and results from methods (and constructors too). This is commonly
performed by AOP code — rather than anything closely related to the business logic.

The following snippet shows a class with a method that has input and response constraints. The
input parameter must be valid and not null. The response must also be not null. A @Valid constraint

on an input argument or response will trigger the object validation—which we just
demonstrated —to be performed.

Validate Method Calls
public class AService {
public String aMethod(AClass aParameter) { @ @

return ...

}

@ @NotNull constrains aParameter to always be non-null

@ @Valid triggers validation contents of aParameter

With those validation rules in place, we can check them for the following sample call.

Obtain Reference to Target Service and Input Parameters

//given

AService myService = new AService(); @
AClass myValue = new AClass();

//when

String result = myService.aMethod(myValue);

@ Note: Service shown here as POJO. Must be injected for container to intercept and subject to
validation

Please note that the code above is a plain POJO call. Validation is only
o automatically performed for injected components. We will use this call to describe
how to programmatically validate a method call.

5.7. Identify Method Using Java Reflection

Before we can validate anything, we must identify the descriptors of the call and resolve a Method
reference using Java Reflection.

In the following example snippet we locate the method called aMethod on the AService class that
accepts one parameter of AClass type.

Identify Method to Call using Java Reflection

Object[] methodParams = new Object[]{ myValue };
(lass<?>[] methodParamTypes = new Class<?>[]{ AClass.class };
Method methodToCall = AService.class.getMethod("aMethod", methodParamTypes);

The code above has now resolved a reference to the following method call

Resolved Method Reference

(AService)myService).aMethod((AClass)myValue);

5.8. Programmatically Check for Parameter Violations

Without actually making the call, we can check whether the given parameters violate defined
method constraints by accessing the ExecutableValidator from the Validator object. Executable is a
generalized java.lang.reflect type for Method and Constructor.

Programmatically Check For Parameter Violations
//when

Set<ConstraintViolation<AService>> violations = validator
.forExecutables() @®

10

.validateParameters(myService, methodToCall, methodParams);

@ returns ExecutableValidator

The following snippet shows the reporting of the validation results when subjecting our myValue
parameter to the defined validation rules of the aMethod() method.

Invalid Input is Identified

//then

then(violations).hasSize(1);

ConstraintViolation<?> violation = violations.iterator().next();
then(violation.getPropertyPath().toString()).isEqualTo("aMethod.arg@.aValue");
then(violation.getMessage()).isEqualTo("must not be null");
then(violation.getInvalidValue()).isEqualTo(null);
then(violation.getInvalidValue()).isEqualTo(myValue.getAValue());

5.9. Validate Method Results

We can also validate what is returned against the defined rules of the aMethod() method using the
same service instance and method reflection references from the parameter validation. Except in
this case, methodToCall has already been called and we are now holding onto the result value.

The following example shows an example of validating a null result against the return rules of the
aMethod() method.

Validating Value Relative to Method Return Value Constraints

//given

String nullResult = null;

//when

violations = validator.forExecutables()
.validateReturnValue(myService, methodToCall, nullResult);

Since null is not allowed, one violation is reported.

Method Return Value Constraint Violation(s)

//then

then(violations).hasSize(1);

violation = violations.iterator().next();
then(violation.getPropertyPath().toString()).isEqualTo("aMethod.<return value>");
then(violation.getMessage()).isEqualTo("must not be null");
then(violation.getInvalidValue()).isEqualTo(nullResult);

11

Chapter 6. Method Parameter Naming

Validation is able to easily gather meaningful field path information from classes and properties.
When we validated the AClass instance, we were told the given name of the property in error

supplied from reflection.
Java Class with Property
class AClass {

private String aValue;

Validation Result using Property Name

field name=aValue, value=null, violated=must not be null

However, reflection by default does not provide the given names of parameters — only the position.

Java Method Declaration with Parameter

public class AService {

public String aMethod(AClass aParameter) {
return ...

}

Validation result using Argument Position
[ERROR] SelfDeclaredValidatorTest.method_arguments:96

expected: "aMethod.aParameter.aValue"
but was: "aMethod.arg0.aValue"

@ By default, argument position supplied (argd) —not argument name

There are two ways to solve this.

6.1. Add -parameters to Java Compiler Command

The first way to solve this would be to add the -parameter option to the Java compiler.

The following snippet shows how to do this for the maven-compiler-plugin. Note that this only
applies to what is compiled with Maven and not what is actively worked on within the IDE.

Add -parameters to Maven Compile Command

<plugin>
<groupId>org.apache.maven.plugins</groupId>

12

<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<parameters>true</parameters>
</configuration>
</plugin>

The above appears to work fine Maven compiler plugin 3.10.1, but I encountered
o issues getting that working with the older 3.8.1 (without an explicit -parameters in
compilerArgs).

6.2. Add Custom ParameterNameProvider

Another way to help provide parameter names is to configure the ValidatorFactory with a
ParameterNameProvider.

Add Custom ParameterNameProvider

ValidatorFactory myValidatorFactory = Validation.byDefaultProvider()
.configure()
.parameterNameProvider (new MyParameterNameProvider()) @®
.buildValidatorFactory();

® configuring ValidatorFactory with custom parameter name provider

6.3. ParameterNameProvider

The following snippets shows the skeletal structure of a sample ParameterNameProvider. It has
separate incoming calls for Method and Constructor calls and must produce a list of names to use.
This particular example is simply returning the default. Example work will be supplied next.

Custom Parameter Name Provider Skeletal Shell

import javax.validation.ParameterNameProvider;
import java.lang.reflect.Constructor;

import java.lang.reflect.Executable;

import java.lang.reflect.Method;

import java.lang.reflect.Parameter;

public class MyParameterNameProvider implements ParameterNameProvider {

public List<String> getParameterNames(Constructor<?> ctor) {
return getParameterNames((Executable) ctor);

}

public List<String> getParameterNames(Method method) {
return getParameterNames((Executable) method);

}

protected List<String> getParameterNames(Executable method) {

13

https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-compiler-plugin

List<String> argNames = new ArraylList<>(method.getParameterCount());

for (Parameter p: method.getParameters()) {
//do something to determine Parameter p's desired name

String argName=p.getName(); @
argNames.add(argName);

}

return argNames; @

@ real work to determine the parameter name goes here

@ must return a list of parameter names of expected size

6.4. Named Parameters

The Bean Validation API does not provide a way to annotate parameters with names. They left that
up to us and other Java standards. In this example, I am making use of javax.inject.Named to supply

a textual name of my choice.

Java Method Declaration with @ Named Parameter
import javax.inject.Named;

private static class AService {

public String aMethod(("aParameter") AClass aParameter) {®

return ...

}

@ @Named annotation is providing a name to use for MyParameterNameProvider

6.5. Determining Parameter Name

Now we can update MyParameterNameProvider to look for and use the @Named.value property if
provided or default to the name from reflection.

Processing @Named Annotation to Obtain Parameter Name

Named named = p.getAnnotation(Named.class);
String argName=named!=null && StringUtils.isNotBlank(named.value()) ?

argName=named.value() : //@Named.property
p.getName(); //default reflection name

argNames.add(argName);

The result is a property path that possibly has more meaning.

14

Before/After Parameter Naming Solution(s) Applied

original: aMethod.arg@.aValue
assisted: aMethod.aParameter.aValue

15

Chapter 7. Graphs

Constraint validation has the ability to follow a graph of references annotated with @Valid.

The following snippet shows an example set of parent classes —each with a reference to equivalent
child instances. The child instance will be invalid in both cases. Only one of the child references is

annotated with @Valid.

Validation Graph Example Classes

class Child {

String cannotBeNull; @
}

class NonTraversingParent {
Child child = new Child(); @

}
class TraversingParent {
@
Child child = new Child(); ®
+

@ child attribute constrained to not be null
@ child instantiated with default instance but not annotated
® child instantiated with default instance

@ annotation instructs validator to traverse to the child and validate

7.1. Graph Non-Traversal

We know from the previous chapter that we can validate any constraints on an object by passing
the instance to the validate() method. However, validation will stop there if there are no @Valid

annotations on references.

The following snippet shows an example of a parent with an invalid child, but due to the lack of
@Valid annotation, the child state is not evaluated with the parent.

No Validation Traversal to Child

//given
Object nonTraversing = new NonTraversingParent(); @

//when
Set<ConstraintViolation<Object>> violations = validator.validate(nonTraversing); @

//then
then(violations).isEmpty(); ®

@ parent contains an invalid child

@ constraint validation does not traverse from parent to child

16

® child errors are not reported because they were never checked

7.2. Graph Traversal

Adding the @Valid annotation to an object reference activates traversal to and validation of the
child instance. This can be continued to grandchildren with follow-on child @Valid annotations.

The following snippet shows an example of a parent who’s validation traverses to the child because
of the @Valid annotation.

Validation Traversal to Child

import javax.validation.Valid;

//given

Object traversing = new TraversingParent(); @

//when

Set<ConstraintViolation<Object>> violations = validator.validate(traversing); @

//then

String errorMsgs = violations.stream()
.map(v->v.getPropertyPath().toString()+":"+v.getMessage())
.collect(Collectors.joining("\n"));

then(errorMsgs).contains("child.cannotBeNull:must not be null"); ®
then(violations).hasSize(1);

@ parent contains an invalid child
@ constraint validation traverses relationship and performed on parent and child

® child errors reported

17

Chapter 8. Groups

The Bean Validation API supports validation within different contexts using groups. This allows us
to write constraints for specific situations, use them when appropriate, and bypass them when not
pertinent. The earlier examples all used the default javax.validation.groups.Default group and
were evaluated by default because no groups were specified in the call to validate().

We can defined our own custom groups using interfaces.

8.1. Custom Validation Groups

The following snippet shows an example of two groups. Create should only be applied during
creation. CreatePlusDefault should only be applied during creation but will also apply default
validation. UpdatePlusDefault can be used to denote constraints unique to updates.

Custom Validation Groups
import javax.validation.groups.Default;

public interface PocValidationGroups { ®
public interface Create{}; @
public interface CreatePlusDefault extends Create, Default{}; @
public interface UpdatePlusDefault extends Default{};

@ custom group name to be used during create
@ groups that extend another group have constrains for that group applied as well

® outer interface not required, Used in example to make purpose and source of group obvious

8.2. Applying Groups
We can assign specific groups to constraints individually.
In the following example,

* @Null id will only be validated when validating the Create or CreatePlusDefault groups
* @Past dob will be validated for both CreatePlusDefault and Default validation

e @Size contactPoints and @NotNull contactPoints will each be validated the same as @Past dob.
The default group is Default when left unspecified.

public class PersonPocDTO {
(groups = PocValidationGroups.Create.class, @
message = "cannot be specified for create")
private String 1id;
private String firstName;
private String lastName;
(groups = Default.class) @

18

private LocalDate dob;
(min=1, message = "must have at least one contact point") ®
private List< ContactPointDTO> contactPoints;

@ explicitly setting group to Create, which does not include Default
@ explicitly setting group to Default

@ implicitly setting group to Default

8.3. Skipping Groups
With use case-specific groups assigned, we can have certain defined constraints ignored.

The following example shows the validation of an object. It has an assigned id, which would make
it invalid for a create. However, there are no violations reported because the group for the @Null id
constraint was not validated.

Validation Group Skipped Example

//given
ContactPointDTO invalidForCreate = contactDTOFactory.make(ContactDTOFactory.oneUpld);

®

//when

Set<ConstraintViolation<ContactPointDTO>> violations = validator.validate
(invalidForCreate); @

//then

then(violations).hasSize(0);

@ object contains non-null id, which is invalid for create scenarios

@ implicitly validating against the default group. Create group constraints not validated

Can Redefine Default Group for Type with @GroupSequence

The Bean Validation API makes it possible to redefined the default group for a
particular type using a @GroupSequence.

8.4. Applying Groups

To apply a non-default group to the validation — we can simply add their interface identifiers in a
sequence after the object passed to validate().

The following snippet shows an example of the CreatePlusDefault group being applied. The @Null id
constraint is validated and reported in error because the group is was assigned to was part of the
validation command.

Validation Group Applied Example

//given

19

https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#_code_groupsequence_code

String expectedError="1id:cannot be specified for create";

//when

violations = validator.validate(invalidForCreate, CreatePlusDefault.class); @
//then

then(violations).hasSize(1); @
then(errors(violations)).contains(expectedError); @

@ validating both the CreatePlusDefault and Default groups

@ @Null id violation detected and reported

® errors() is a local helper method written to extract field and text from violation

20

Chapter 9. Multiple Groups

We have two ways of treating multiple groups

validate all
performed by passing more than one group to the validate() method. Each group is validated in
a non-deterministic manner

short circuit
performed by defining a @GroupSequence. Each group is validated in order and the sequence is
short-circuited when their is a failure.

9.1. Example Class with Different Groups
The following snippet shows an example of a class with validations that perform at different costs.

* @Size email is thought to be simple to validate
* @Email email is thought to be a more detailed validation

* the remaining validations have not been addressed by this classification

Class with Different Groups

public class ContactPointDTO {
(groups = {Create.class},
message = "cannot be specified for create")
private String id;

private String name;
(min=7, max=40, groups= SimplePlusDefault.class) @

(groups = DetailedOnly.class) @
private String email;

@ @Size email is thought to be a cheap sanity check, but overly simplistic

@ @Email email is thought to be thorough validation, but only worth it for reasonably sane values
The following snippet shows the groups being used in this example.
Example Groups

public interface Create{};

public interface SimplePlusDefault extends Default {}
public interface DetailedOnly {}

9.2. Validate All Supplied Groups

When groups are passed to validate in a sequence, all groups in that sequence are validated.

21

The following snippet shows an example with SimplePlusDefault and DetailedOnly supplied to
validate(). Each group will be validated, no matter what the results are.

Validate All Supplied Groups Example

String nameErr="name:must not be null"; //Default Group
String sizeErr="email:size must be between 7 and 40"; //Simple Group
String formatErr="email:must be a well-formed email address"; //DetailedOnly Group
//when - validating against all groups
Set<ConstraintViolation<ContactPointDTO>> violations = validator.validate(
invalidContact,
SimplePlusDefault.class, DetailedOnly.class);
//then - all groups will have their violations reported
then(errors(violations)).contains(nameErr, sizeErr, formatErr).hasSize(3); ® @ ®

@ @NotNull name (nameError) is part of Default group
@ @Size email (sizeError) is part of SimplePlusDefault group

® @Email email (formatError) is part of DetailedOnly group

9.3. Short-Circuit Validation

If we instead want to layer validations such that cheap validations come first and more extensive or
expensive validations occur only after earlier groups are successful, we can define a
@GroupSequence.

* Groups earlier in the sequence are performed first.

* Groups later in the sequence are performed later —but only if all constraints in earlier groups
pass. Validation will short-circuit at the individual group level when applying a sequence.

The following snippet shows an example of defining a @GroupSequence that lists the order of group
validation.

Example @GroupSequence

@GroupSequence({ SimplePlusDefault.class, DetailedOnly.class }) @
public interface DetailOrder {};

@ defines an order-list of validation groups to apply

The following example shows how the validation stopped at the SimplePlusDefault group and did
not advance to the DetailedOnly group.

@GroupSequence Use Example

//when - validating using a @GroupSequence

violations = validator.validate(invalidContact, DetailOrder.class);
//then - validation stops once a group produces a violation
then(errors(violations)).contains(nameErr, sizeErr).hasSize(2); @®

22

@ validation was short-circuited at the group where the first set of errors detected

9.4. Override Default Group

o The @GroupSequence " annotation can be directly applied to a type to override the
default group when validating instances of that class.

23

Chapter 10. Spring Integration

We saw earlier how we could programmatically validate constraints for Java methods. This
capability was not intended for business code to call — but rather for calls to be intercepted by AOP
and constraints applied by that intercepting code. We can annotate @Component classes or interfaces
with constraints and have Spring perform that validation role for us.

The following snippet shows an example of a interface with a simple aCall method that accepts an
int parameter that must be greater than 5. All the information on the method call should be
familiar to you by now. Only the @Validated annotation is new. The @Validated annotation triggers
Spring AOP to apply Bean Validation to calls made on the type (interface or class).

Component Interface
import org.springframework.validation.annotation.Validated;

import javax.validation.constraints.Min;

@
public interface ValidatedComponent {

void aCall((5) int mustBeGE5); @
}

@ interface defines constraint for parameter(s)

@ @Validated triggers Spring to perform method validation on component calls

10.1. Validated Component

The following snippet shows a class implementation of the interface and further declared as a
@Component. Therefore it can be injected and method calls subject to container interpose using AOP
interception.

Component Implementation

@®
public class ValidatedComponentImpl implements ValidatedComponent {

public void aCall(int mustBeGE5) {
}

@ designates this class implementation to be used for injection
The component is injected into clients.

Component Injection

24

private ValidatedComponent component;

10.2. ConstraintViolationException
With the component injected, we can have parameters and results validated against constraints.

The following snippet shows an example component call where a call is made with an invalid
parameter. Spring performs the method validation, throws a
javax.validation.ConstraintViolationException, and prevents the call. The
Set<ConstraintViolation> can be obtained from the exception. At that point we have returned to
some familiar territory we covered with programmatic validation.

Injected Component Validation by Spring

import javax.validation.ConstraintViolationException;

//when

ConstraintViolationException ex = catchThrowableOfType(
() -> component.aCall(1), @
ConstraintViolationException.class);

//then

Set<ConstraintViolation<?>> violations = ex.getConstraintViolations();

String errorMsgs = violations.stream()
.map(v->v.getPropertyPath().toString() +":" + v.getMessage())

.collect(Collectors.joining("\n"));
then(errorMsgs).isEqualTo("aCall.mustBeGE5:must be greater than or equal to 5");

@ Spring intercepts the component call, detects violations, and reports using exception

10.3. Successful Validation

Of course, if we pass valid parameter(s) to the method —

* the parameters are validated against the method constraints
* no exception is thrown
 the @Component method is invoked

 the return object is validated against declared constraints (none in this example)

Example Successful Call
assertThatNoException().isThrownBy(
()->component.aCall(10) @
Ik

@ parameter value 10 satisfies the @Min(5) constraint — thus no exception

25

10.4. Liskov Substitution Principle

One thing you may have noticed with the selected example is that the interface contained
constraints and not the class declaration. As a matter of fact, if we add any additional constraint
beyond what the interface defined—we will get a ConstraintDeclarationException
thrown — preventing the call from completing. The Bean Validation Specification describes it as
following the Liskov Substitution Principle —where anything that is a sub-type of T can be inserted
in place of T. Said more specific to Bean Validation —a sub-type or implementation class method
cannot add more restrictive constraints to call.

public class ValidatedComponentImpl implements ValidatedComponent {

public void aCall(int mustBeGE5) {} //invalid @

@ Bean Validation enforces that subtypes cannot be more constraining than their interface or
parent type(s)

Liskov Violation Error Message Example

javax.validation.ConstraintDeclarationException: HV000151: A method overriding another
method must not redefine the parameter constraint configuration, but method
ValidatedComponentImpl#aCall(int) redefines the configuration of
ValidatedComponent#aCall(int).

10.5. Disabling Parameter Constraint Override

For the Hibernate Validator, the constraint override rule can be turned off during factory
configuration. You can find other Hibernate-specific features in the Hibernate Validator Specifics
section of the on-line documentation.

The snippet below uses a generic property interface to disable parameter override constraint.

Generic Property Setting

return Validation.byDefaultProvider() @
.configure()
.addProperty("hibernate.validator.allow_parameter_constraint_override",
Boolean.TRUE.toString()) @
.parameterNameProvider (new MyParameterNameProvider())
.buildValidatorFactory()
.getValidator();

@ generic factory configuration interface used to initialize factory

@ generic property interface used to set custom behavior of Hibernate Validator

The snippet below uses a Hibernate-specific configurer and custom method to disable parameter

26

https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-method-constraints-inheritance-hierarchies
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#validator-specifics
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#validator-specifics

override constraint.

Hibernate Specific API Supported Property Setting

return Validation.byProvider(HibernateValidator.class) @

.configure()
.allowOverridingMethodAlterParameterConstraint(true) @

.parameterNameProvider (new MyParameterNameProvider())

.buildValidatorFactory()
.getValidator();

@ Hibernate-specific configuration interface used to initialize factory

@ Hibernate-specific method used to set custom behavior of Hibernate Validator

10.6. Spring Validated Group(s)

We saw earlier how we could programmatically validate using explicit validation groups. Spring
uses the @Validated annotation in a dual role to define that as well.

» @Validated on the interface/class triggers validation to occur

» @Validated on a parameter or method causes the validation to apply the identified group(s)

o the groups attribute is used for this purpose

Declarative Validation Group Assignment for Method

//@Validated @
public interface PocService {

(CreatePlusDefault.class) @

public PersonPocDTO createPOC(

®
PersonPocDTO0 personDT0); @

@ @Validated at the class/interface/component level triggers validation to be performed

@ @Validated at the method level used to apply specific validation groups (CreatePlusDefault)
® @NotNull at the property level requires personDT0 to be supplied

@ @Valid at the property level triggered personDTO0 to be validated

10.7. Spring Validated Group(s) Example

The following snippet shows an example of a class where the id property is required to be null

when validating against the Create group.

PersonPocDTO id Property

public class PersonPocDTO {
(groups = Create.class, message = "cannot be specified for create")

27

private String id; @

@ id must be null only when validating against Create group

The following snippet shows the constrained method being passed a parameter that is illegal for the
Create constraint group. A ConstraintViolationException is thrown with violations.

Spring Group Validation Example

PersonPocDTO pocWithId = pocFactory.make(oneUpId); ®

assertThatThrownBy(() -> pocService.createPOC(pocWithId)) @
.isInstance0f(ConstraintViolationException.class)
.hasMessageContaining("createPOC.person.id: cannot be specified for create");

@

@ @Validated on component triggered validation to occur
@ @Validated(CreatePlusDefault.class) caused Create and Default rules to be validated

® poc instance created with an id assigned — making it invalid

28

Chapter 11. Custom Validation

Earlier I listed several common, built-in constraints and available library constraints. Hopefully,
they provide most or all of what is necessary to meet our validation needs — but there is always
going to be that need for custom validation.

The snippet below shows an example of a custom validation being applied to a LocalDate —that
validates the value is of a certain age in years, with an optional timezone offset.

@MinAge Custom Constraint Example Usage

public class ValidatedClass {
(age = 16, tzOffsetHours = -4)
private LocalDate dob;

11.1. Constraint Interface Definition

We can start with the interface definition for our custom constraint annotation.

Example Validation Constraint Interface

({ ElementType.METHOD, FIELD, ANNOTATION_TYPE, PARAMETER, TYPE_USE })
(RetentionPolicy.RUNTIME)
(value= MinAge.List.class)
(validatedBy = {
MinAgelLocalDateValidator.class,
MinAgeDateValidator.class

1)
public MinAge {
String message() default "age below minimum({age}) age";
Class<?>[] groups() default {};
(lass<? extends Payload>[] payload() default {};
int age() default 0;
int tzOffsetHours() default 0;
(RUNTIME)
({ METHOD, FIELD, ANNOTATION_TYPE, PARAMETER, TYPE_PARAMETER })
public List {
MinAge[] value();
}
}

29

https://beanvalidation.org/2.0-jsr380/spec/#builtinconstraints
https://github.com/nomemory/java-bean-validation-extension

11.2. @Documented Annotation

The @Documented annotation instructs the Javadoc processing to include the Javadoc for this
annotation within the Javadoc output for the classes that use it.

@Documented Annotation

/**

* Defines a minimum age based upon a LocalDate, the current
* LocalDate, and a specified timezone.
*/

@Documented //include this in Javadoc for elements that it is defined

The following images show the impact made to Javadoc for a different @PersonHasName annotation
example. Not only are the constraints shown for the class but the documentation for the
annotations is included in the produced Javadoc.

Class PersonPocDTO

java.lang.Object
info.ejava.examples.db.validation.contacts.dto.PersonPocDTO

EPersonHasName
public class PersonPocDTO
extends Object

Figure 1. PersonPocDTO Javadoc

éDocumented
EConstraint(validatedBy=PersonHasNameValidator.class)
ETarget | TYPE)

ERetention (RUNTIME)

public @interface PersonHasName

A person is required to have either a first or last name. One or the other can be null but not both.

Figure 2. @PersonHasName Annotation Javadoc

11.3. @Target Annotation

The @Target annotation defines locations where the constraint is legally allowed to be applied. The
following table lists examples of the different target types.

Table 2. Annotation @Target ElementTypes

30

ElementType.FIELD ElementType. METHOD

@MinAge LocalDate dob; @VinAge LocalDate getDob();
@MinAge void add(LocalDate dob,

. I . _ LocalDate dateOfHire);®
define validation on a Java attribute within a

class : . .
@ @MinAge being used as cross-param constraint
here
define validation on a return type or Cross-
parameters of a method
ElementType.PARAMETER ElementType.TYPE_USE
void method(@MinAge LocalDate dob){} List<@MinAge LocalDate> dobs;

define validation on a parameter to a method define validation within a parameterized type

ElementType.TYPE ElementType.CONSTRUCTOR
@MinAge class Person {
class Person { LocalDate dob;
LocalDate dob; @MinAge Person() {}
} }

define validation on an interface or class that define validation on the resulting instance after
likely inspects the state of the type constructor completes

ElementType. ANNOTATION_TYPE
public @interface MinAge {}

@MinAge(age=18)
public @interface AdultAge {...

This type allows other annotations to be defined
based on this annotation. The snippet shows an
example of constraint EAdultAge to be
implemented as @MinAge(age=18)

11.4. @Retention

@Retention is used to determine the lifetime of the annotation.

Annotation @Retention
@Retention(

//SOURCE - annotation discarded by compiler
//CLASS - annotation available in class file but not loaded at runtime - default

31

RetentionPolicy.RUNTIME //annotation available thru reflection at runtime

Bean Validation should always use RUNTIME

11.5. @Repeatable

The @ERepeatable annotation and declaration of an annotation wrapper class is required to supply
annotations multiple times on the same target. This is normally used in conjunction with different
validation groups. The @Repeatable.value specifies an @interface that contains a value method that
returns an array of the annotation type.

The snippet below provides an example of the @Repeatable portions of MinAge.

Enabling @Repeatable

(value= MinAge.Llist.class)

public MinAge {
(RUNTIME)
({ METHOD, FIELD, ANNOTATION_TYPE, PARAMETER, TYPE_USE })
public List {

MinAge[] value();
}

The following snippet shows the annotation being applied multiple times to the same
property — but assigned different groups.

Example @Repeatable Use

(age=18, groups = {VotingGroup.class})
(age=65, groups = {RetiringGroup.class})
public LocalDate getConditionalDOB() {
return dob;

}

Repeatable Syntax Use Simplified

The requirement for the wrapper class is based on the Java requirement to have
only one annotation type per target. Prior to Java 8, we were also required to
explicitly use the construct in the code. Now it is applied behind the scenes by the

o compiler.

Pre-Java 8 Use of Repeatable
List({

(age=18, groups = {VotingGroup.class})
(age=65, groups = {RetiringGroup.class})

32

1)
public LocalDate getConditionalDOB() {

11.6. @Constraint

The @Constraint is used to identify the class(es) that will implement the constraint. The annotation
is not used for constraints built upon other constraints (e.g., 0AdultAge = @MinAge). The annotation
can specify multiple classes — one for each unique type the constraint can be applied to.

The following snippet shows two validation classes: one for java.util.Date and the other for
java.time.LocalDate.

@Constraint

(validatedBy = {
MinAgelocalDateValidator.class, @
MinAgeDateValidator.class @

3]
public MinAge {

@ validates annotated LocalDate values

@ validates annotated Date values

Constraining Different Types

(age=18, groups = {VotingGroup.class})
(age=65, groups = {RetiringGroup.class})
public LocalDate getConditionalDOB() { @
return dob;

}

(age=16, message="found java.util.Date age({age}) violation")
public Date getDobAsDate() { @
return Date.from(dob.atStartOfDay().toInstant(ZoneOffset.UTC));

}

@ constraining type LocalDate

@ constraining type Date
11.6.1. Core Constraint Annotation Properties

The core constraint annotation properties include

message

contains the default error message template to be returned when constraint violated. The
contents of the message get interpolated to fill in variables and substitute entire text strings. This
provides a means for more detailed messages as well as internationalization of messages.

33

https://docs.jboss.org/hibernate/validator/6.1/reference/en-US/html_single/#chapter-message-interpolation

groups
identifies which group(s) to validate this constraint against

payload
used to supply instance-specific metadata to the validator. A common example is to establish a
severity structure to instruct the validator how to react.

The following snippet provides an example declaration of core properties for @MinAge constraint.

Core Constraint Annotation Properties

public MinAge {
String message() default "age below minimum({age}) age";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};

11.7. @MinAge-specific Properties

Each individual constraint annotation can also define its own unique properties. These values will
be expressed in the target code and made available to the constraining code at runtime.

The following example shows the @MinAge constraint with two additional properties

* age - defines how old the subject has to be in years to be valid

* tzOffsetHours - an example property demonstrating we can have as many as we need
@MinAge-specific Properties
public MinAge {

int age() default 0;
int tzOffsetHours() default 0;

11.8. Constraint Implementation Class

The annotation referenced zero or more constraint implementation classes — differentiated by the
Java type they can process.

@Constraint

(validatedBy = {
MinAgelLocalDateValidator.class,
MinAgeDateValidator.class

1)
public MinAge {

34

Each implementation class has two methods they can override.

* initialize() accepts the specific annotation instance that will be validated against

* isValid() accepts the value to be validated and a context for this specific call. The minimal job
of this method is to return true or false. It can optionally provide additional or custom details
using the context.

11.9. Constraint Implementation Type Examples

The following snippets show the @MinAge constraint being implemented against two different
temporal types: java.time.LocalDate and java.util.Date. We, of course, could have used inheritance
to simplify the implementation.

@MinAge java.time.LocalDate Constraint Implementation Class
public class MinAgelLocalDateValidator implements ConstraintValidator<MinAge,
LocalDate> {
public void initialize(MinAge annotation) { ... }

public boolean isValid(LocalDate dob, ConstraintValidatorContext context) { ... }

@MinAge java.util. Date Constraint Implementation Class

public class MinAgeDateValidator implements ConstraintValidator<MinAge, Date> {

public void initialize(MinAge annotation) { ... }

public boolean isValid(Date dob, ConstraintValidatorContext context) { ... }

11.10. Constraint Initialization

The constraint initialize provides a chance to validate whether the constraint definition is valid on
its own. An invalid constraint definition is reported using a RuntimeException. If an exception is
thrown during either the initialize() or isValid() method, it will be wrapped in a
ValidationException before being reported to the application.

Constraint Initialization
public class MinAgelLocalDateValidator implements ConstraintValidator<MinAge,
LocalDate> {

private int minAge;
private ZoneOffset zoneOffset;

public void initialize(MinAge annotation) {

35

https://beanvalidation.org/2.0-jsr380/spec/#example-constraintsdefinitionimplementation-validationimplementation-invaliddef
https://beanvalidation.org/2.0-jsr380/spec/#example-constraintsdefinitionimplementation-validationimplementation-invaliddef

if (annotation.age() < 0) {
throw new I1legalArqgumentException("age constraint cannot be negative");

}

this.minAge = annotation.age();

if (annotation.tzOffsetHours() > 23 || annotation.tzOffsetHours() < -23) {
throw new I1legalArqumentException("tzOffsetHours must be between -23 and +23
)i
}

zoneQffset = ZoneOffset.ofHours(annotation.tz0ffsetHours());

}

11.11. Constraint Validation

The isValid() method is required to return a boolean true or false —to indicate whether the value
is valid according to the constraint. It is a best-practice to only validate non-null values and to
independently use @NotNull to enforce a required value.

The following snippet shows a simple evaluation of whether the expressed LocalDate value is older
than the minimum required age.

Constraint Validation

public boolean isValid(LocalDate dob, ConstraintValidatorContext context) {
if (dob!=null) { //assume null is valid and use @NotNull if it should not be
final LocalDate now = LocalDate.now(zoneOffset);
final int currentAge = Period.between(dob, now).getYears();
return currentAge >= minAge;

}
return true;
}
}
(;) Treat Null Values as Valid
- Null values should be considered valid and independently constrained by @NotNull.

11.12. Custom Violation Messages

I won’t go into any detail here, but will point out that the isValid() method has the opportunity to
either augment or replace the constraint violation messages reported.

The following example is from a cross-parameter constraint and is reporting that parameters 1 and
2 are not valid when used together in a method call.

Custom Violation Messages

context.buildConstraintViolationWithTemplate(context.getDefaultConstraintMessageTempla

36

te())
.addParameterNode(1)
.addConstraintViolation()
.buildConstraintViolationWithTemplate(context
.getDefaultConstraintMessageTemplate())
.addParameterNode(2)
.addConstraintViolation();
//the following removes default-generated message
//context.disableDefaultConstraintViolation(); @

@ make this call to eliminate default message
The following shows the default constraint message provided in the target code.

Default Constraint Message Provided

@ConsistentNameParameters(message = "namel and/or name2 must be supplied") @
public NamedThing(String id, String name1, String name2, LocalDate dob) {

® @ConsistentNameParameters is a cross-parameter validation constraint validating namel and
name2

Generated Violation Message Paths
NamedThing.name1:name1 and/or name2 must be supplied @M

NamedThing.name2:name1 and/or name2 must be supplied @
NamedThing.<cross-parameter>:name1 and/or name2 must be supplied @

@ path/message generated by the custom constraint validator

@ default path/message generated by validation framework

37

Chapter 12. Cross-Parameter Validation

Custom validation is useful but often times the customization is necessary for when we need to
validate two or more parameters used together.

The following snippet shows an example of two parameters—namel and name2 —with the
requirement that at least one be supplied. One or the other can be null — but not both.

Cross-Parameter Constraint Use Example

class NamedThing {
(message = "namel and/or name2 must be supplied") @®

public NamedThing(String id, String namel, String name2, LocalDate dob) {

@ cross-parameter annotation placed on the method

12.1. Cross-Parameter Annotation

The cross-parameter constraint will likely only apply to a method or constructor, so the number of
@Targets will be more limited. Other than that — the differences are not yet apparent.

Cross-Parameter Annotation

(validatedBy = ConsistentNameParameters.ConsistentNameParametersValidator

.class)
({ElementType.METHOD, ElementType.CONSTRUCTOR})
(RetentionPolicy.RUNTIME)
public ConsistentNameParameters {

12.2. @SupportedValidationTarget

Because of the ambiguity when annotating a method, we need to apply the
@SupportedValidationTarget annotation to identify whether the validation is for the parameters
going into the method or the response from the method.

 ValidationTarget. PARAMETERS - parameters to method
* ValidationTarget. ANNOTATED_ELEMENT - returned element from method

Example Cross-Parameter Validator Declaration
(ValidationTarget.PARAMETERS) @

public class ConsistentNameParametersValidator
implements ConstraintValidator<ConsistentNameParameters, Object[]> { @

@ declaring that we are validating parameters going into method/ctor

@ must accept Object[] that will be populated with actual parameters

38

@SupportValidationTarget adds Clarity to Annotation Purpose

Think how the framework would be confused without the
@SupportedValidationTarget annotation if we wanted to validate a method that
returned an Object[]. The framework would not know whether to pass us the

parameters or the response object.

12.3. Method Call Correctness Validation

Funny - within the work of a validation method, it sometimes needs to validate whether it is being
called correctly. Was the constraint annotation applied to a method with the wrong signature?
Did — somehow — a parameter of the wrong type end up in an unexpected position?

The snippet below highlights the point that cross-parameter constraint validators are strongly tied
to method signatures. They expect the parameters to be validated in a specific position in the array

and to be of a specific type.

Validating Correct Method Call

public boolean isValid(Object[] values, ConstraintValidatorContext context) { @
if (values.length != 4) { @

throw new I1legalArgumentException(
String.format("Unexpected method signature, 4 params expected, %d

supplied", values.length));

}

for (int i=1; i<3; i++) { //look at positions 1 and 2 @

if (values[i]!=null && !(values[i] instanceof String)) {
throw new I1legalArqumentException(
String.format("Illegal method signature, param[%d], String expected,

%s supplied", i, values[i].getClass()));

}

}

@ method parameters supplied in Object[]

@ not a specific requirement for this validation — but sanity check we have what is expected

® names validated must be of type String

12.4. Constraint Validation

Once we have the constraint properly declared and call-correctness validated, the implementation
will look similar to most other constraint validations. This method is required to return a true or

false.

Constraint Validation

39

40

public boolean isValid(Object[] values, ConstraintValidatorContext context) { @®

String namel= (String) values[1];
String name2= (String) values[2];
return (StringUtils.isNotBlank(namel1) || StringUtils.isNotBlank(name2));

Chapter 13. Web API Integration

13.1. Vanilla Spring/AOP Validation

From what we have learned in the previous chapters, we know that we should be able to annotate
any @Component class/interface —including a @RestController —and have constraints validated. I am
going to refer to this as "Vanilla Spring/AOP Validation" because it is not unique to any component

type.

The following snippet shows an example of the Web API @RestController that validates parameters
according to Create and Default Groups.

@RestController Validating Constraints using Vanilla AOP Validation

@

public class ContactsController {

(path=CONTACTS_PATH,
method= RequestMethod.POST,
consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
(PocValidationGroups.CreatePlusDefault.class) @
public ResponseEntity<PersonPocDT0> createPOC(

®
PersonPocDTO personDTO) {

@ triggers validation for component
@ configures validator for method constraints

® identifies constraint for parameter

If we call this with an invalid personDT0 (relative to the Default or Create groups), we would expect
to see validation fail and some sort of error response from the Web API.

13.2. ConstraintViolationException Not Handled

As expected —Spring will validate the constraints and throw a ConstrainViolationException.
However, Spring Boot—out of the box—does not provide built-in exception advice for
ConstraintViolationException. That will result in the caller receiving a 500/INTERNAL_SERVER_ERROR
status response with the default error reporting message. It is understandable that would be the
default since constraints can be technically validated and reported from all different levels of our
application. The exception could realistically be caused by a real internal server error.
However — the reported status does not always have to be generic and misleading.

41

Default ConstraintViolation API Response
> POST http://localhost:64153/api/contacts

{"id":"1","firstName":"Douglass"”, "lastName":"Effertz","dob":[2011,6,14], "contactPoints
":[{"id":null, "name":"Cell","email":"penni.kautzer@hotmail.com", "phone":"(876) 285-
7887 x1055","address":{"street":"69166 Angelo Landing","city":"Jaredshire","state":"
IA","zip":"81764-6850"}}1}

< 500 INTERNAL_SERVER_ERROR Internal Server Error @M

{ "url" : "http://localhost:53298/api/contacts",

"statusCode" : 500,

"statusName" : "INTERNAL_SERVER_ERROR",

"message" : "Unexpected Error",

"description” : "unexpected error executing request:
javax.validation.ConstraintViolationException: createPOC.person.id: cannot be
specified for create",

"timestamp" : "2021-07-01714:58:48.7772697" }

@ INTERNAL_SERVER_ERROR status is mis-leading — cause is bad value provided by client

The violation — at least in this case —was a bad value from the client. The id property cannot be
assigned when attempting to create a contact. Ideally —this would get reported as either a
400/BAD_REQUEST or 422/UNPROCESSABLE_ENTITY. Both are 4xx/Client error status and will point to
something the client needs to correct.

13.3. ConstraintViolationException Exception Advice

Assuming that the invalid value came from the client, we can map the unhandled
ConstraintViolationException to a 400/BAD_REQUEST wusing (in this case) a global
@RestControllerAdvice.

The following snippet shows how we can take some of the code we have seen used in the JUnit tests
to report validation details —and use that within an @ExceptionHandler to extract the details and
report as a 400/BAD_REQUEST to the client.

Mapping ConstraintViolationException to BAD_REQUEST

import info.ejava.examples.common.web.BaseExceptionAdvice;

0]

public class ExceptionAdvice extends BaseExceptionAdvice { @

(ConstraintViolationException.class)
public ResponseEntity<MessageDT0> handle(ConstraintViolationException ex) {
String description = ex.getConstraintViolations().stream()
.map(v->v.getPropertyPath().toString() + ":" + v.getMessage())
.collect(Collectors.joining("\n"));
HttpStatus status = HttpStatus.BAD_REQUEST; ®

42

return buildResponse(status, "Validation Error", description, (Instant)null);

@ controller advice being applied globally to all controllers in the application context
@ extending a class of exception handlers and helper methods

® hard-wiring the exception to a 400/BAD_REQUEST status

13.4. ConstraintViolationException Mapping Result

The following snippet shows the Web API response to the client expressed as a 400/BAD_REQUEST.

ConstraintViolationException Mapped to 400/BAD_REQUEST

{ "url" : "http://localhost:53408/api/contacts"”,
"statusCode" : 400,
"statusName" : "BAD_REQUEST",
"message" : "Validation Error",
"description” : "createPOC.person.id: cannot be specified for create",
"timestamp" : "2021-07-01715:10:59.037162Z" }

Converting from a 500/INTERNAL_SERVER_ERROR to a 400/BAD_REQUEST is the minimum of what we
wanted (at least it is a Client Error status), but we can try to do better. We understood what was

requested — but could not process the payload as provided.

13.5. Controller Constraint Validation

To cause the violation to be mapped to a 422/UNPROCESSABLE_ENTITY to better indicate the problem,
we can activate validation within the controller framework itself versus the vanilla Spring/AOP

validation.

The following snippet shows an example of the @RestController identifying validation and specific
validation groups as part of the Web API framework. The @Validated annotation is now being used

on the Web API parameters.

Activating @RestController Validation of Payload

(path=CONTACTS_PATH,
method= RequestMethod.POST,
consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
//@Validated(PocValidationGroups.CreatePlusDefault.class) -- no longer needed ®
public ResponseEntity<PersonPocDTO0> createPOC(

//@Valid -- replaced by @Validated @
(PocValidationGroups.CreatePlusDefault.class) @
PersonPocDTO personDT0) {

43

@ vanilla Spring/AOP validation has been disabled

@ Web API-specific parameter validation has been enabled

13.6. MethodArgumentNotValidException

Spring MVC will independently validate the @RequestBody, ©RequestParam, and @PathVariable
constraints according to internal rules. Spring will throw an
org.springframework.web.bind.MethodArqumentNotValidException exception when encountering a
violation with the request body. That exception is mapped —by default—to return a very terse
400/BAD_REQUEST response.

The snippet below show an example response payload for the default
MethodArqgumentNotValidException mapping.

MethodArgumentNotValidException Default Mapping

< 400 BAD_REQUEST Bad Request
{"timestamp":"2021-07-01T715:24:44.464+00:00",
"status":400,
"error":"Bad Request",

"message":"",
“path":"/api/contacts"}

By default — we may want to be terse to avoid too much information leakage. However, in this case,
let’s improve this.

13.7. MethodArgumentNotValidException Custom
Mapping
Of course, we can change the behavior if desired using a custom exception handler.

The following snippet shows an example custom exception handler mapping
MethodArqumentNotValidException to a 422/UNPROCESSABLE_ENTITY.

MethodArgumentNotValidException Custom Mapping to 422/UNPROCESSABLE_ENTITY

public class ExceptionAdvice extends BaseExceptionAdvice {
(ConstraintViolationException.class)
public ResponseEntity<MessageDT0> handle(ConstraintViolationException ex) { ... }

(MethodArgumentNotValidException.class)
public ResponseEntity<MessageDTO> handle(MethodArgumentNotValidException ex) { @

List<String> fieldMsgs = ex.getFieldErrors().stream() @
.map(e -> e.getObjectName()+"."+e.getField()+": "+e.getDefaultMessage())
.tolist();

List<String> globalMsgs = ex.getGlobalErrors().stream() @

44

.map(e -> e.getObjectName() +": "+ e.getDefaultMessage())
.tolist();

String description = Stream.concat(fieldMsgs.stream(), globalMsgs.stream())
.collect(Collectors.joining("\n"));

return buildResponse(HttpStatus.UNPROCESSABLE_ENTITY, "Validation Error",
description, (Instant)null);

@ Spring MVC throws MethodArgumentNotValidException for @RequestBody violations
@ reports fields of objects in error

® reports overall objects (e.g., cross-parameter violations) in error

13.7.1. MethodArgumentNotValidException Custom Mapping Response

This results in the client receiving an HTTP status indicating the request was understood but the
payload provided was invalid. The description is as terse or verbose as we want it to be.

MethodArgumentNotValidException Custom Mapping Response

{ "url" : "http://localhost:53818/api/contacts”,
"statusCode" : 422,
"statusName" : "UNPROCESSABLE ENTITY",
"message" : "Validation Error",
"description” : "personPocDTO.id: cannot be specified for create”,
"timestamp" : "2021-07-01715:38:48.0450387" }

Can Also Supply Client Value if Permitted

The exception handler has access to the invalid value if security policy allows

o information like that to be in the response. Note that error messages tend to be
placed into logs and logs can end up getting handled at a generic level. For
example, you would not want an invalid partial but mostly correct SSN to be part
of an error log.

13.8. @PathVariable Validation

Note that the Web API maps the @RequestBody constraint violations independently from the other
parameter types.

The following snippet shows an example of validation constraints applied to @PathVariable. These
are physically in the URIL

@PathVariable Validation

(path= CONTACT_PATH,
method=RequestMethod.GET,
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
public ResponseEntity<PersonPocDT0> getPOC(
(name="1id")

45

(regexp = "[0-9]+", message = "must be a number") @®
String id) {

@ validation here is thru vanilla Spring/AOP validation

13.9. @PathVariable Validation Result

The Web API (using vanilla Spring/AOP validation here) throws a ConstraintViolationException for
@PathVariable and @RequestParam properties. We can leverage the custom exception handler we
already have in place to do a decent job reporting status.

The following snippet shows an example response that is being mapped to a 400/BAD_REQUEST using
our custom exception handler for ConstraintViolationException. 400/BAD_REQUEST seems appropriate
because the id path parameter is invalid garbage (1::-34) in this case.

@PathVariable Validation Violation Response

> HTTP GET http://localhost:53918/api/contacts/1...34, headers={masked}
< BAD_REQUEST/400
{ "url" : "http://localhost:53918/api/contacts/1...34",

"statusCode" : 400,

"statusName" : "BAD_REQUEST",

"message" : "Validation Error",

"description” : "getP0OC.id: must be a number",

“timestamp" : "2021-07-01715:51:34.724036Z" }

Remember —if we did not have that custom exception handler in place for
ConstraintViolationException, the HTTP status would have been a 500/INTERNAL_SERVER_ERROR.

Unmapped ConstraintViolationException for @PathVariable Violation

< 500 INTERNAL _SERVER_ERROR Internal Server Error
{"timestamp":"2021-07-01T719:21:31.345+00:00", "status":500,"error":"Internal Server
Error","message":"","path":"/api/contacts/1...34"}

13.10. @RequestParam Validation

@RequestParam validation follows the same pattern as @PathVariable and gets reported using a
ConstraintViolationException.

@RequestParam Validation

(path= EXAMPLE_CONTACTS_PATH,
method=RequestMethod.POST,
consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
public ResponseEntity<PersonsPageDT0> findPocsByExample(
(value = "pageNumber", defaultValue = "0", required = false)

46

Integer pageNumber,
(value = "pageSize", required = false)
Integer pageSize,

(value = "sort", required = false) String sortString,
PersonPocDTO probe) {

13.11. @RequestParam Validation Violation Response

The following snippet shows an example response for an invalid set of query parameters.

@RequestParam Validation Violation Response

> POST http://localhost:53996/api/contacts/example?pageNumber=-1&pageSize=0
{...}
> BAD_REQUEST/400
{ "url" : "http://localhost:53996/api/contacts/example?pageNumber=-1&pageSize=0",»O @
"statusCode" : 400,
"statusName" : "BAD REQUEST",
"message" : "Validation Error",
"description” : "findPocsByExample.pageNumber: must be greater than or equal to 0
\nfindPocsByExample.pageSize: must be greater than 0",
"timestamp" : "2021-07-01715:55:44.0897347" }

@ pageNumber has an invalid negative value

@ pageSize has an invalid non-positive value

13.12. Non-Client Errors

One thing you may notice with the previous examples is that every constraint violation was blamed
on the client —whether it was bad server code calling internally or not.

As an example, lets have the API require that value be non-negative. A successful validation of that
constraint will result in a service method call.

Web API Requires Client Supply Non-Negative @RequestParam

(path = POSITIVE_OR_ZERO_PATH,
method=RequestMethod.GET,
produces = {MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
public ResponseEntity<?> positive(
@
(name
PersonPocDTO resultDTO

"value") int value) {
contactsService.positiveOrZero(value); @

47

@ @RequestParam validated

@ value from valid request passed to service method

13.13. Service Method Error

The following snippet shows that the service call makes an obvious error by passing the value to an
internal component requiring the value to not be positive.

Downstream Component Makes Error
public class PocServiceImpl implements PocService {

public PersonPocDTO positiveOrZero(int value) {
//obviously an error!!
internalComponent.negativeOrZero(value);

The internal component leverages the Bean Validation by placing a @NegativeOrZero constraint on
the value. This is obviously going to fail when the value is ever non-zero.

Internal Component Declares Violated Constraint

public class InternalComponent {
public void negativeOrZero(int value) {

13.14. Violation Incorrectly Reported as Client Error

The snippet below shows an example response of the internal error. It is being blamed on the
client—when it was actually an internal server error.

Internal Server Error Incorrectly Reported as Client Error
> GET http://localhost:54298/api/contacts/positiveOrZero?value=1

< 400 BAD_REQUEST Bad Request

{ "url":"http://localhost:54298/api/contacts/positiveOrZero?value=1",
"statusCode":400,
"statusName":"BAD_REQUEST",
"message":"Validation Error",

"description”:"negativeOrZero.value: must be less than or equal to 0",
"timestamp":"2021-07-01716:23:27.666154Z"}

13.15. Checking Violation Source

One thing we can do to determine the proper HTTP response status—is to inspect the source

48

information of the violation.

The following snippet shows an example of inspecting the whether the violation was reported by a
class annotated with @RestController. If from the API, then report the 400/BAD_REQUEST as usual. If
not, report it as a 500/INTERNAL_SERVER_ERROR. If you remember —that was the original default
behavior.

Internal Error Detected thru Source Information

(ConstraintViolationException.class)
public ResponseEntity<MessageDT0> handle(ConstraintViolationException ex) {
String description = ...

boolean isFromAPI = ex.getConstraintViolations().stream() @
.map(v -> v.getRootBean().getClass().getAnnotation(RestController.class))
.filter(a->a!=null)
.findFirst()
.orElse(null)!=null;

HttpStatus status = isFromAPI ?
HttpStatus.BAD_REQUEST : HttpStatus.INTERNAL_SERVER_ERROR;
return buildResponse(status, "Validation Error", description, (Instant)null);

@ isFromAPI set to true if any of the violations came from component annotated with
@RestController

13.16. Internal Server Error Correctly Reported

The following snippet shows the response to the client when our exception handler detects that is is
handling at least one violation generated from a class annotated with @RestController.

Internal Server Error Correctly Reported

{ "url" : "http://localhost:54434/api/contacts/positiveOrZero?value=1",
"statusCode" : 500,
"statusName" : "INTERNAL_SERVER_ERROR",
"message" : "Validation Error",
"description” : "negativeOrZero.value: must be less than or equal to 0",
“timestamp" : "2021-07-01716:45:50.2357247" }

Any Source of Constraint Violation May be used to Impact Behavior

There is no magic to using the @RestController annotation as a trigger for certain

O behavior. Annotations are used all of the time to denote classes of a certain
pattern. One could create a custom annotation that explicitly indicates what we
are looking to identify.

49

13.17. Service-detected Client Exrrors

Assuming we do a thorough job validating all client inputs at the @RestController level, we might be
done. However, what about the case where the client validation is pushed down to the @Service
components. We would have to adjust our violation source inspection.

The following snippet shows an example of a service validating client requests using the same
constraints as before — except this is in a lower-level component.

Service Validating Client Request
public interface PocService {

(PocValidationGroups.CreatePlusDefault.class)
public PersonPocDTO createPOC(

PersonPocDTO personDT0);

Without any changes, we get violations reported as 400/BAD_REQUEST status — which as I stated in the
beginning was "OK".

Service Violation Reported as 400/BAD_REQUEST

< 400 BAD_REQUEST Bad Request
{ "url" : "http://localhost:55168/api/contacts",
"statusCode" : 400,
"statusName" : "BAD_REQUEST",
"message" : "Validation Error",
"description" : "createPOC.person.id: cannot be specified for create",
"timestamp" : "2021-07-01717:40:12.2214977" }

I won’t try to improve the HTTP status using source annotations on the validating class. I have
already shown how to do that. Lets try another technique.

13.18. Payload

One other option we have to is leverage the payload metadata in each annotation. Payload classes
are interfaces extending javax.validation.Payload that identify certain characteristics of the
constraint.

Annotations Include Payload Metadata
public Xxx {
String message() default "...";

Class<?>[] groups() default { };
(lass<? extends Payload>[] payload() default { }; @

@ Annotations can carry extra metadata in the payload property

50

The snippet below shows an example of a Payload subtype that expresses the violation should be
reported as a 500/INTERNAL_SERVICE_ERROR

Example HttpStatus Payload

public interface InternalError extends Payload {}
This payload information can be placed in constraints that are known to be validated by internal
components.

Internal Component with Payload

public class InternalComponent {
public void negativeOrZero((payload = InternalError.class) int

value) {

13.19. Exception Handler Checking Payloads

The snippet below shows our generic, global advice factoring in whether the violation came from
an annotation with a InternalError in the payload.

Exception Handler Checking Payloads

(ConstraintViolationException.class)
public ResponseEntity<MessageDT0> handle(ConstraintViolationException ex) {
String description = ...;
boolean isFromAPI = ...;
boolean isInternalError = isFromAPI ? false : @
ex.getConstraintViolations().stream()
.map(v -> v.getConstraintDescriptor().getPayload())
.filter(p-> p.contains(InternalError.class))
.findFirst()
.orElse(null)!=null;

HttpStatus status = isFromAPI || !isInternalError ?
HttpStatus.BAD_REQUEST : HttpStatus.INTERNAL_SERVER_ERROR;

return buildResponse(status, "Validation Error", description, (Instant)null);

@ isInternalError set to true if any violations contain the InternalError payload

13.20. Internal Violation Exception Handler Results

The following snippet shows an example of a constraint violation where none of the violations

31

where assigned a payload with InternalError. The status is returned as 400/BAD_REQUEST.

Violation From Annotation without Payload

> POST http://localhost:55288/api/contacts
< 400/BAD_REQUEST
"url" : "http://localhost:55288/api/contacts”,
"statusCode" : 400,
"statusName" : "BAD_REQUEST",
"message" : "Validation Error",
"description” : "createPOC.person.id: cannot be specified for create",
"timestamp" : "2021-07-01T17:56:23.0808842"

The following snippet shows an example of a constraint violation where at least one of the
violations were assigned a payload with InternalError. The client may not be able to make heads-
or-tails out of the error message, but at least they would know it is something on the server-side to
be corrected.

Violation from Annotation with InternalError Payload

> GET http://localhost:57547/api/contacts/positiveOrZero?value=1

< INTERNAL_SERVER_ERROR/500

{ "url" : "http://localhost:57547/api/contacts/positiveOrZero?value=1",
"statusCode" : 500,
"statusName" : "INTERNAL_SERVER_ERROR",
"message" : "Validation Error",
"description” : "negativeOrZero.value: must be less than or equal to 0",
"timestamp" : "2021-07-01720:25:05.188126Z" }

32

Chapter 14. JPA Integration

Bean Validation is integrated into the JPA standard. This can be used to validate entities mostly
when created, updated, or deleted. Although not part of the standard, it is also used by some
providers to customize generated database schema with additional RDBMS constraints (e.g.,
@NotNull, @Size). By default, the JPA provider will implement validation of the Default group for all

@Entity classes during creation or update.

The following is a list of JPA properties that can be used to impact the behavior. They all need to be
prefixed with spring.jpa.properties. when using Spring Boot properties to set the value.

Table 3. JPA Validation Configuration Properties

javax.persistence.validation.m ahility to control validation at a

ode high level

javax.persi stence. validation.g jdentify groups(s) validated
roup.pre-persist prior to inserting new row

javax.persistence.validation.g jdentify group(s) validated
roup.pre-update prior to updating existing row

javax.persistence.validation.g jdentify group(s) validated
roup.pre-remove prior to removing existing row

* auto - implement validation
if provider available

(default)

e callback - validation

is

required and will fail if

provider missing

e none - disable wvalidation

entirely within JPA

* javax.validation.groups.
Default.class (default)

* javax.validation.groups.
Default.class (default)

e (none) (default)

33

Chapter 15. Mongo Integration

A basic Bean Validation implementation is integrated into Spring Data Mongo. It leverages event-
specific callbacks from AbstractMongoEventListener, which is integrated into the Spring
ApplicationListener framework.

There are no configuration settings and after you see the details — you will quickly realize that they
mean to handle the most common case (validate the Default group on save()) and for us to
implement the corner-cases.

The following snippet shows an example of activating the default MongoRepository validation.

Basic MongoRepository Validation Configuration

import
org.springframework.data.mongodb.core.mapping.event.ValidatingMongoEventListener;

public class MyMongoConfiguration {

public ValidatingMongoEventListener mongoValidator(Validator validator) {
return new ValidatingMongoEventListener(validator);

}

15.1. Validating Saves

To demonstrate validation within the data tier, lets assume that our document class has a constraint
for the dob to be supplied.

Example Mongo Document Class with Constraint
(collection = "pocs")

public class PersonPOC {

private LocalDate dob;

When we attempt to save a PersonPOC in the repository without a dob, the following example shows
that the Java source object is validated, a violation is detected, and a ConstraintViolationException
is thrown.

Example Validation on save()

//given
PersonPOC noDobPOC = mapper.map(pocDTOFactory.make().withDob(null));

54

https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/mapping/event/AbstractMongoEventListener.html
https://docs.spring.io/spring-framework/docs/5.3.8/javadoc-api/org/springframework/context/ApplicationListener.html?is-external=true

//when

assertThatThrownBy(() -> contactsRepository.save(noDobPOC))
.isInstance0f(ConstraintViolationException.class)
.hasMessageContaining("dob: must not be null");

There is nothing more to it than that until we look into the implementation of
ValidatingMongoEventListener.

15.2. ValidatingMongoEventListener

ValidatingMongoEventListener extends AbstractMongoEventListener, has a Validator from injection,
and overrides a single event callback called onBeforeSave().

ValidatingMongoEventListener
package org.springframework.data.mongodb.core.mapping.event;
é&élic class ValidatingMongoEventListener extends AbstractMongoEventListener<Object> {
é;%vate final Validator validator;
public void onBeforeSave(BeforeSaveEvent<Object> event) {

}

It does not take much imagination to guess how the rest of this works. I have removed the debug
code from the method and provided the remaining details here.

onBeforeSave Details

public void onBeforeSave(BeforeSaveEvent<Object> event) {
Set violations = validator.validate(event.getSource());

if (!violations.isEmpty()) {

throw new ConstraintViolationException(violations);

}

The onBeforeSaveEvent is called after the source Java object has been converted to a form that is
ready for storage.

15.3. Other AbstractMongoEventListener Events

There are many reasons —beyond validation (e.g., sub-document ID generation)—we can take
advantage of the AbstractMongoEventListener callbacks, so it will be good to provide an overview of
them now.

55

https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/mapping/event/AbstractMongoEventListener.html
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/mapping/event/AbstractMongoEventListener.html

¢ There are three core events: Save, Load, and Delete
» Several possible stages to each core event
o before action performed (e.g., delete)
= and before converting between Java object and Document (e.g., save and load)
= and after converting between Java object and Document (e.g., save and load)

- after action is complete (e.g., save)
The following table lists the specific events.

Table 4. MongoMappingEvents

onApplicationEvent(MongoMappingEvent<?> general purpose event handler
event)

onBeforeConvert(BeforeConvertEvent<E> event) callback before Java object converted to Document

onBeforeSave(BeforeSaveEvent<E> event) callback after Java object converted to Document
and before saved to DB

onAfterSave(AfterSaveEvent<E> event) callback after Document saved

onAfterLoad(AfterLoadEvent<E> event) callback after Document loaded from DB and
before converted to Java object

onAfterConvert(AfterConvertEvent<E> event) callback after Document converted to Java object
onBeforeDelete(BeforeDeleteEvent<E> event) callback before document deleted from DB

onAfterDelete(AfterDeleteEvent<E> event) callback after document deleted from DB

15.4. MongoMappingEvent
The MongoMappingEvent itself has three main items.

* Collection Name —name of the target collection
* Source —the source or target Java object

* Document — the source or target bson data type stored to the database

Our validation would always be against the source, so we just need a callback that provides us with
a read-only value to validate.

36

https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/mapping/event/MongoMappingEvent.html

Chapter 16. Patterns / Anti-Patterns

Every piece of software has an interface with some sort of pre-conditions and post-conditions that
have some sort of formal or informal constraints. Constraint validation — whether using custom
code or Bean Validation framework—is a decision to be made when forming the layers of a
software architecture. The following patterns and anti-patterns list a few concerns to address. The
original outline and content provided below is based on Tom Hombergs' Bean Validation Anti-
Patterns article.

16.1. Data Tier Validation

The Data tier has long been the keeper of data constraints — especially with RDBMS schema.

» Should the constraint validations discussed be implemented at that tier?
* Can validation wait all the way to the point where it is being stored?

* Should service and other higher levels of code be working with data that has not been
validated?

16.1.1. Data Tier Validation Safety Checks
Hombergs' suggestion was to use the data tier validation as a safety check, but not the only layer. "

That, of course, makes a lot of sense since the data tier may not need to know what a valid e-mail
looks like or (to go a bit further) what type of e-mail addresses we accept? However, the data tier
will want to sanity check that required fields exist and may want to go as far as validating format if
query implementations require the data to be in a specific form.

16.2. Use case-specific Validation

Re-use is commonly a goal in software development. However, as we saw with validation
groups — some data types have use case-specific constraints.

The simple example is when id could not be
. . . @ Person
provided during a create but was legal in all
other situations. @Mulllgroup=Create.class] String id
@MotNull String name

Figure 3. Re-usable Data Class with Use case-Specific
Semantics

As more use case-specific constraints pile up on re-usable classes they can get very cluttered and
present a violation of single purpose Single-responsibility principle.

16.2.1. Separate Syntactic from Semantic Validation

Hombergs proposes we

57

https://reflectoring.io/bean-validation-anti-patterns/
https://reflectoring.io/bean-validation-anti-patterns/
https://en.wikipedia.org/wiki/Single-responsibility_principle

* use Bean Validation for syntactical validation for re-usable data classes

* implement query methods in the data classes for semantic state and perform checks against
that specific state within the use case-specific code. ™

One way of implementing use case-specific query methods and have them leverage Bean Validation
constraints and a re-used data type would be to create use case-specific decorators or wrappers.
Lombok’s experimental @Delegate code generation may be of assistance here.

«Decorators
RegisteringPerson @ Person
@Valid Person person stringid
: @NotNull String name
@MNull String getld() { return person.getid(); }

Figure 4. Use case-Specific Data Wrapper

16.3. Anti: Validation Everywhere

It is likely for us to want to validate at the client interface (Web API) since these are very external
inputs. It is also likely for us to want to validate at the service level because our service could be
injected into multiple client interfaces. It is then likely that internal components see how easy it is
to add validation triggers and add to the mix. At the end of the line — the persistence layer adds a
final check.

In some cases, we can get the same information validated several times. We have already shown in
the Bean Validation details earlier in this topic —the challenge it can be to determine what is a
client versus internal issue when a violation occurs.

16.3.1. Establish Validation Architecture

Hombergs recommends having a clear validation strategy versus ad-hoc everywhere "

I agree with that strategy and like to have a clear dividing line of "once it reaches this point —data
its valid". This is where I like to establish service entry points (validated) and internal components
(sanity checked). Entry points check everything about the data. Internal components trust that the
data given is valid and only need to verify if a programming error produced a null or some other
common illegal value.

‘ only maps validated data BI ‘ trusts data is walid mI
'| '|
| |
| |
API Senvice CHEIE s AR sanity checks against software error B‘
walidates
Y Y
DTO BO
@MNotMull @Email @AcceptedEmailProvider String email @MotMull String email
@MothNull @Past @MinAge LocalDate dob @NotMull LocalDate dob

38

https://projectlombok.org/features/experimental/Delegate
https://projectlombok.org/features/experimental/Delegate

I also believe separating data types into external ("DTOs") and internal ("BOs") helps thin down the
concerns. DTO classes would commonly be thorough and allow clients to know exactly what
constraints exist. BO classes —used by the business and persistence logic only accept valid DTOs
and should be done with detailed validation by the time they are mapped to BO classes.

16.3.2. Separating Persistence Concerns/Constraints

Hombergs went on to discuss a third tier of data types— persistence tier data types— separate
from BOs as a way of separating persistence concerns away from BO data types. ” This is part of
implementing a Hexagonal Software Architecture where the core application has no dependency
on any implementation details of the other tiers. This is more of a plain software architecture topic
than specific to validation — but it does highlight how there can be different contexts for the same
conceptual type of data processed.

[1] "Bean Validation Anti-Patterns”, Tom Hombergs

[2] "Get Your Hands Dirty on Clean Architecture", Tom Hombergs, 2019

39

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://reflectoring.io/bean-validation-anti-patterns/
https://reflectoring.io/bean-validation-anti-patterns/
https://reflectoring.io/book/

Chapter 17. Summary

In this module we learned:

* to add Bean Validation dependencies to the project

* to add declarative pre-conditions and post-conditions to components using the Bean Validation
API

* to define declarative validation constraints

* to configure a ValidatorFactory and obtain a Validator
* to programmatically validate an object

* to programmatically validate parameters to and response from a method call
* to enable Spring/AOP validation for components

* to implement custom validation constraints

* to implement a cross-parameter validation constraint
* to configure Web API constraint violation responses

* to configure Web API parameter validation

* to identify patterns/anti-patterns for validation

* to configure JPA validation

* to configure Spring Data Mongo Validation

* to identify some patterns/anti-patterns for using validation

60

	Bean Validation
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Background
	Chapter 3. Dependencies
	Chapter 4. Declarative Constraints
	4.1. Data Constraints
	4.2. Common Built-in Constraints
	4.3. Method Constraints

	Chapter 5. Programmatic Validation
	5.1. Manual Validator Instantiation
	5.2. Inject Validator Instance
	5.3. Customizing Injected Instance
	5.4. Review: Class with Constraint
	5.5. Validate Object
	5.6. Validate Method Calls
	5.7. Identify Method Using Java Reflection
	5.8. Programmatically Check for Parameter Violations
	5.9. Validate Method Results

	Chapter 6. Method Parameter Naming
	6.1. Add -parameters to Java Compiler Command
	6.2. Add Custom ParameterNameProvider
	6.3. ParameterNameProvider
	6.4. Named Parameters
	6.5. Determining Parameter Name

	Chapter 7. Graphs
	7.1. Graph Non-Traversal
	7.2. Graph Traversal

	Chapter 8. Groups
	8.1. Custom Validation Groups
	8.2. Applying Groups
	8.3. Skipping Groups
	8.4. Applying Groups

	Chapter 9. Multiple Groups
	9.1. Example Class with Different Groups
	9.2. Validate All Supplied Groups
	9.3. Short-Circuit Validation
	9.4. Override Default Group

	Chapter 10. Spring Integration
	10.1. Validated Component
	10.2. ConstraintViolationException
	10.3. Successful Validation
	10.4. Liskov Substitution Principle
	10.5. Disabling Parameter Constraint Override
	10.6. Spring Validated Group(s)
	10.7. Spring Validated Group(s) Example

	Chapter 11. Custom Validation
	11.1. Constraint Interface Definition
	11.2. @Documented Annotation
	11.3. @Target Annotation
	11.4. @Retention
	11.5. @Repeatable
	11.6. @Constraint
	11.7. @MinAge-specific Properties
	11.8. Constraint Implementation Class
	11.9. Constraint Implementation Type Examples
	11.10. Constraint Initialization
	11.11. Constraint Validation
	11.12. Custom Violation Messages

	Chapter 12. Cross-Parameter Validation
	12.1. Cross-Parameter Annotation
	12.2. @SupportedValidationTarget
	12.3. Method Call Correctness Validation
	12.4. Constraint Validation

	Chapter 13. Web API Integration
	13.1. Vanilla Spring/AOP Validation
	13.2. ConstraintViolationException Not Handled
	13.3. ConstraintViolationException Exception Advice
	13.4. ConstraintViolationException Mapping Result
	13.5. Controller Constraint Validation
	13.6. MethodArgumentNotValidException
	13.7. MethodArgumentNotValidException Custom Mapping
	13.8. @PathVariable Validation
	13.9. @PathVariable Validation Result
	13.10. @RequestParam Validation
	13.11. @RequestParam Validation Violation Response
	13.12. Non-Client Errors
	13.13. Service Method Error
	13.14. Violation Incorrectly Reported as Client Error
	13.15. Checking Violation Source
	13.16. Internal Server Error Correctly Reported
	13.17. Service-detected Client Errors
	13.18. Payload
	13.19. Exception Handler Checking Payloads
	13.20. Internal Violation Exception Handler Results

	Chapter 14. JPA Integration
	Chapter 15. Mongo Integration
	15.1. Validating Saves
	15.2. ValidatingMongoEventListener
	15.3. Other AbstractMongoEventListener Events
	15.4. MongoMappingEvent

	Chapter 16. Patterns / Anti-Patterns
	16.1. Data Tier Validation
	16.2. Use case-specific Validation
	16.3. Anti: Validation Everywhere

	Chapter 17. Summary

