Testcontainers with Spock

jim stafford

Fall 2022 v2020-08-14: Built: 2022-12-07 06:20 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Background
2.1. Application Background
2.2. Integration Testing Approach
2.3. Docker Compose
2.4. Testcontainers
3. Docker Compose
3.1. Docker Compose File
3.2. Start Network
3.3. Access Logs
3.4. Execute Commands
3.5. Shutdown Network
3.6. Override/Extend Docker Compose File
3.7. Using Mapped Host Ports
3.8. Supplying Properties
3.9. Specifying an Override File
3.10. Override File Result
4. Testcontainers and Spock
4.1. Source Tree
4.2. @SpringBootConfiguration
4.3. Traditional @Bean Factories
4.4. DockerComposeContainer
4.5. @SpringBootTest
4.6. Spock Network Management
4.7. Set System Property
4.8. ApplicationContextInitializer
4.9. DynamicPropertySource
4.10. Resulting Test Initialization Output
5. Additional Waiting
6. Executing Commands
6.1. Example Command Output
7. Client Connections
7.1. Maven Dependencies
7.2. Hard Coded Application Properties
7.3. Dynamic URL Helper Methods
7.4. Adding Dynamic Properties

© © 00 0 00 I J O O B B W W wDND R

NN NN N DNNIDN R R B R o) R |l |, |, |) s s
BOR W W W R R O 00N Ul WwWw NN o o

7.5. Adding JMS Listener
7.6. Injecting Resource Clients
7.7. Resource Client Calls
8. Test Hierarchy
8.1. Network Helper Class
8.2. Integration Spec Base Class
8.3. Specialized Integration Test Classes
8.4. Test Execution Results

9. Summary

25
25
26
27
27
27
28
28
30

Chapter 1. Introduction

In several other lectures in this section I have individually covered the use of embedded resources,
Docker, Docker Compose, and Testcontainers for the purpose of implementing integration tests
using JUnit Jupiter.

docker (apih

Japif...
In this lecture, I am going to cover A 5 i
using Docker Compose and /
Testcontainers with Spock to satisfy dcucke:/ M
an additional audience. I am assuming

the reader of this set of lecture notes
may not have gone through the earlier Image: mongo
material but is familiar with Docker
and Spock (but not used together). I
will be repeating some aspects of Figyre 1. Target Integration Environment
earlier lectures but provide only light
detail. Please refer back to the earlier
lecture notes if you need more details.

image: postgres

Integration Unit Test terminology

I use the term "integration test" somewhat loosely but use the term "integration
unit test" to specifically mean a test that uses the Spring context under the control

o of a simple unit test capable of being run inside of an IDE (without assistance) and
executed during the Maven test phase. I use the term "unit test" to mean the same
thing except with stubs or mocks and the lack of the overhead (and value) of the
Spring context.

1.1. Goals

You will learn:
* to identify the capability of Docker Compose to define and implement a network of virtualized
services running in Docker

* to identify the capability of Testcontainers to seamlessly integrate Docker and Docker Compose
into unit test frameworks including Spock

* to author end-to-end, integration unit tests using Spock, Testcontainers, Docker Compose, and
Docker

* to implement inspections of running Docker images
* to implement inspects of virtualized services during tests

* to instantiate virtualized services for use in development

https://docs.docker.com/compose/
https://www.testcontainers.org/
http://spockframework.org/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#lifecycle-reference

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1
2
3
4.
5
6

. define a simple network of Docker-based services within Docker Compose
. control the lifecycle of a Docker Compose network from the command line

. implement a Docker Compose override file

control the lifecycle of a Docker Compose network using Testcontainers

. implement an integration unit test within Spock, using Testcontainers and Docker Compose

. implement a hierarchy of test classes to promote reuse

Chapter 2. Background

2.1. Application Background

The application we are implementing and
looking to test is a set of voting services with Web App
back-end resources. Users cast votes using the fapif...

Votes Service and obtain election results using
the Elections Service. Casted votes are stored in
MongoDB and election results are stored and
queried in Postgres. The two services stay in
sync through a JMS topic hosted on ActiveMQ.

-

MongoDB
Because of deployment constraints unrelated to

testing —the two services have been hosted in
the same JVM

developer

Figure 2. Voting and Election Services

2.2. Integration Testing Approach

The target of this lecture is the implementation of end-to-end integration tests. Integration tests do
not replace fine-grain unit tests. In fact there are people with strong opinions (expressed) that
believe any attention given to integration tests takes away from the critical role of unit tests when it
comes to thorough testing. I will agree there is some truth to that — we should not get too distracted
by this integration verification playground to the point that we end up placing tests that could be
verified in pure, fast unit tests —inside of larger, slower integration tests. However, there has to be
a point in the process where we need to verify some amount of useful end-to-end threads of our
application in an automated manner — especially in today’s world of microservices where critical
supporting services have been broken out. Without the integration test—there is nothing that
proves everything comes together during dynamic operation. Without the automation — there is no
solid chance regression testing.

Junit jum Bl One way to begin addressing automated
% — integration testing with back-end resources is
— IBD!NDUHQ . . .
/ /apifelections through the use of in-memory configurations
NTest
J and simulation of dependencies—Ilocal to the
N e S unit test JVM. This addresses some of the
flapdoodie " @%D nmemory | | integration need when it is something like a
(in-memory managed MongoDB) h2 database
database or JMS server, but will miss the mark

Figure 3. In-Memory/Simulated Integration Testing ~completely when we need particular versions of
Environment a full fledged application service.

https://blog.thecodewhisperer.com/permalink/integrated-tests-are-a-scam

docker (apih

fapif...

We want to instead take advantage of the
popularity of Docker and the ability to virtualize
most back-end and many application services.
We want/need this to be automated like our
other tests so that they can be run as a part of image: mongo
any build or release. Because of their potential
extended length of time and narrow focus —we
will want to separate them into distinct modules Figure 4. Virtualized Integration Testing
to control when they are executed. Environment

leocker M

image: postgres

2.3. Docker Compose

A network of services can be complex and managing many individual Docker images is clumsy. It
would be best if we took advantage of a Docker network/service management layer called Docker
Compose.

Docker Compose uses a YAML file to define the network, services, and even builds services with
"source" build information. With that in place, we can issue a build, start and stop of the services as
well as execute commands to run within the running images. All of this must be on the same
machine.

Because Docker Compose is limited to a single machine and is primarily just a thin coordination
layer around Docker — it is MUCH simpler to use than Kubernetes or MiniKube. For those familiar
with Kubernetes —I like to refer to it as a "poor man’s Helm Chart".

At a minimum, Docker Compose provides a convenient wrapper where we can place environment
and runtime options for individual containers. These containers could be simple databases or JMS
servers — eliminating the need to install software on the local development machine. The tool
really begins to shine when we need to define dependencies and communication paths between
services.

2.4. Testcontainers

Testcontainers provides a seamless integration of Docker and Docker Compose into unit test
frameworks —including JUnit 4, JUnit 5, and Spock. Testcontainers manages a library of resource-
specific containers that can provide access to properties that are specific to a particular type of
image (e.g., databaseUrl for a Postgres container). Testcontainers also provide a generic container
and a Docker Compose container —which provide all the necessary basics of running either a
single image or a network of images.

Testcontainers provides features to

* parse the Docker Compose file to learn the configuration of the network

assign optional variables used by the Docker Compose file
expose specific container ports as random host ports
identify the host port value of a mapped container port

delay the start of tests while built-in and customizable "wait for" checks execute to make sure
the network is up and ready for testing

execute shell commands against the running containers

share a running network between (possibly ordered) tests or restart a dirty network between
tests

Chapter 3. Docker Compose

Before getting into testing, I will cover Docker Compose as a stand-alone capability. Docker
Compose is very useful in standing up one or more Docker containers on a single machine, in a
development or integration environment, without installing any software beyond Docker and
Docker Compose (a simple binary).

3.1. Docker Compose File

Docker Compose uses one or more YAML Docker Compose files for configuration. The default
primary file name is docker-compose.yml, but you can reference any file using the -f option.

The following is a Docker Compose File that defines a simple network of services. I reduced the
version of the file in the example to 2 versus a current version of 3.8 since what I am demonstrating
has existed for many (>5) years.

I have limited the service definitions to an image spec, environment variables, and dependencies. I
have purposely not exposed any container ports at this time to avoid concurrent execution conflicts
in the base file. I have also purposely left out any build information for the API image since that
should have been built by an earlier module in the Maven dependencies. However, you will see a
decoupled way to add port mappings and build information shortly when we get to the Docker
Compose Override/Extend topic. For now — this is our core network definition.

Example docker-compose.yml File

version: '2'
services:
mongo:
image: mongo:4.4.0-bionic
environment:
MONGO_INITDB_ROOT_USERNAME: admin
MONGO_INITDB_ROOT_PASSWORD: secret
postgres:
image: postgres:12.3-alpine
environment:
POSTGRES_PASSWORD: secret
activemq:
image: rmohr/activemq:5.15.9
api:
image: dockercompose-votes-api:latest
depends_on: @
- mongo
- postgres
- activemq
environment:
- spring.profiles.active=integration
- MONGODB_URI=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin
- DATABASE_URL=postgres://postgres:secret@postgres:5432/postgres

@ defines a requirement as well as an /etc/hostname entry to dependent

3.2. Start Network

We can start the network using the up command. We can add a -d option to make all services run in
the background. The runtime container names will have a project prefix and that value defaults to
the name of the parent directory. It can be overridden using the -p option.

Starting Explicitly Named Network in Background

$ docker-compose -p foo up -d

Creating foo_activemgq_1 ... done
Creating foo_postgres_1 ... done
Creating foo_mongo_1 ... done
Creating foo_api_1 ... done

The following shows the runtime Docker image name and port numbers for the running images.
They all start with the project prefix "foo". This is important when trying to manage multiple
instances of the network. Notice too that none of the ports have been mapped to a host port at this
time. However, they are available on the internally defined "foo" network (i.e., accessible from the
API service).

Partial Docker Status
$ docker ps ©)
IMAGE PORTS NAMES
dockercompose-votes-api:latest foo_api_1
postgres:12.3-alpine 5432/tcp foo_postgres_1
rmohr/activemq:5.15.9 1883/tcp, 5672/tcp, ... foo_activemq_T1
mongo:4.4.0-bionic 27017/tcp foo_mongo_1

@ no internal container ports are being mapped to localhost ports at this time

3.3. Access Logs

You can access the logs of all running services or specific services running in the background using
the logs command and by naming the services desired. You can also limit the historical size with
--tail option and follow the log with -f option.

Example Access to Logs

$ docker-compose -p foo logs --tail 2 -f mongo activemq
Attaching to foo_activemq_1, foo_mongo_1

mongo_1 | {"t":{"$date":"2020-08-15T14:10:20.757+00:00"},"s":"I",

mongo_1 | {"t":{"$date":"2020-08-15T14:11:41.580+00:00"},"s":"I", .
activemq_1 | INFO | No Spring WebApplicationInitializer types detected ...
activemg_1 | INFO | jolokia-agent: Using policy access restrictor classpath:...

3.4. Execute Commands

You can execute commands inside a running container. The following shows an example of
running the Postgres CLI (psql) against the postgres container to issue a SQL command against the
VOTE table. This can be very useful during test debugging — where you can interactively inspect the
state of the databases during a breakpoint in the automated test.

Example Exec Command
$ docker-compose -p foo exec postgres psql -U postgres -c "select * from VOTE"
id | choice | date | source @
R T EE T to-- - Ho-mmmm--

(0 rows)

@ executing command that runs inside the running container

3.5. Shutdown Network

We can shutdown the network using the down command or <ctl>-C if it was launched in the
foreground. The project name is required if it is different from the parent directory name.

$ docker-compose -p foo down

Stopping foo_api_1 ... done
Stopping foo_activemq_1 ... done
Stopping foo_mongo_1 ... done
Stopping foo_postgres_1 ... done
Removing foo_api_1 ... done
Removing foo_activemq_1 ... done
Removing foo_mongo_1 ... done
Removing foo_postgres_1 ... done

Removing network foo_default

3.6. Override/Extend Docker Compose File

If CLI/shell access to the VMs is not enough, we can create an override file to specialize the base file.
The following example maps key ports in each Docker container to a host port.

Example Docker Compose Override File

version: '2'
services:
mongo: @
ports:
- "27017:27017"
postgres:
ports:
- "5432:5432"
activemq:

ports:

- "61616:61616"
- "8161:8161"
api:
build: @

context: ../dockercompose-votes-svc
dockerfile: Dockerfile

ports:
- "${API_PORT}:8080"

@ extending definitions of services from base file

@ adding source module info to be able to rebuild image from this module

3.7. Using Mapped Host Ports

Mapping container ports to host ports is useful if you want to simply use Docker Compose to
manage a development environment or you have a tool —like Mongo Compass — that requires a
standard URL.

[XN) MongoDB Compass - localhost:27017/votes_dbvotes
My Cluster 4 localhost:27017 | STANDALONE MongoDB 4.4.0 Community
4 TOTAL SIZE AVG. SIZE TOTAL SIZE AVG. SIZE
VOteS_d b-VOteS DOCUMENTS 2 2628 131B INDEXES 1 4.0KB 4.0KB
Documents Aggregations Schema Explain Plan ndexes Validation
admin
config » OPTIONS m RESET
local
N Gyl lelol ISV VIEW | = LIST | BB TABLE Displaying documents1-20f2 ¢ > C
votes_db
votes _id: ObjectId("5f3951245faf5a3286aa0bff")

date: 2820-08-16T15:30:44.768+08: 00

source: “jim"

choice: "guisp"

_class: "info.ejava.examples. svc.docker.votes.dto. VoteDTO"

_id: ObjectId("5f39512d5faf5a3286aa0c00")

date: 2620-08-16T15:30:53.529+00: 00

source: "jim"

choice: "guake"

_class: "info.ejava.examples. svc.docker.votes.dto. VoteDTO"

Figure 5. MongoDB Compass Connected to MongoDB in Docker Compose

3.8. Supplying Properties

Properties can be passed into the image by naming the variable. The value is derived from one of
the following (in priority order):

1. NAME: value explicitly supplied in the Docker Compose File

2. NAME=value defined in environment variable

3. NAME=value defined in an environment file

The following are example environment files mapping API_PORT to either 9999 or 9090. We can
activate an environment file using the --env-file option or have it automatically applied when

named .env.

Example alt-env File

$ cat alt-env @
API_PORT=9999
$ cat .env @
API_PORT=9090

@ used when --env-file alt-env supplied

@ used by default

3.9. Specifying an Override File

You can specify an override file by specifying multiple Docker Compose files in priority order with
the -f option. The following will use docker-compose.yml as a base and apply the augmentations
from development.yml.

Example Explicit Override Specification

$ docker-compose -p foo -f ./docker-compose.yml -f ./development.yml up -d
Creating network "foo_default" with the default driver

You can have the additional file applied automatically if named docker-compose.override.xml. The
example below uses the docker-compose.xml file as the primary and the docker-compose.override.yml
file as the override.

Using Default Docker Compose and Docker Compose Override File Names

$ 1s docker-compose*
docker-compose.override.yml docker-compose.yml
$ docker-compose -p foo up -d @

@ using default Docker Compose file with default override file

3.10. Override File Result

The following shows the new network configuration that shows the impact of the override file. Key
communication ports of the back-end resources have been exposed on the localhost network.

Example Docker Compose Network Status with Override

$ docker ps ON®)

IMAGE PORTS NAMES
dockercompose-votes-api:latest 0.0.0.0:9090->8080/tcp foo_api_1
mongo:4.4.0-bionic 0.0.0.0:27017->27017/tcp foo_mongo_1
rmohr/activemq:5.15.9 1883/tcp, ... 0.0.0.0:61616->61616/tcp foo_activemg_1
postgres:12.3-alpine 0.0.0.0:5432->5432/tcp foo_postgres_1

10

@ container ports are now mapped to (fixed) host ports

@ API host port used the variable defined in .env file

@,

Override files cannot reduce or eliminate collections

Override files can replace single elements but can only augment multiple
elements. That means one cannot eliminate exposed ports from a base
configuration file. Therefore it is best to keep from adding properties that may be
needed in the base file versus adding to environment-specific files.

11

Chapter 4. Testcontainers and Spock

With an understanding of Docker Compose and a few Maven plugins — we could easily see how we
could integrate our Docker images into an integration test using the Maven integration-test phases.

However, by using Testcontainers — we can integrate Docker Compose into our unit test framework
much more seamlessly and launch tests in an ad-hoc manner right from within the IDE.

sp sic test groovy info ejava examples svc docker wotes (& ElectionCNSpec < ElectonCNSpec v | b # G Gt v v A @ = 0Q
i1 Project v €@ T & — € votesEnvironment tSpec.groovy © VoterListenerjava e < 1 apol o spock licati i A v &
; I3 testcontainers-votes-spock-ntest 3
é - P ° def "vote counted in election" () { ® g3 AR
Y o main gdven: /, ipt m
. ElectionResultsDT0 previousResults = get_election_counts() £
H VoteDTO[] votesCasted = IntStream.range(®, 2).mapTo0bj(Integer mapper x->VoteDTO.builder() s
2 »source (UUID.randombUID() . tostring())
= _choice((x%2==6 ? "quisp-* : "quake-') + UUID.randomUUIDC) .toString()).build())
-toArray(Integer generator: size->new VoteDTO[size])
H int tinesVoted=3
&
5 ~ Exinfo.sjava.examples sve dockervotes re c
I & Election2CNSpec Instant.now()
€' Election3CNSpec for (1=8; i<timesVoted; i++) {
€ ElectionCNSpec. for (int v = 8; v < votesCasted.length; ve+) {
W)\Votes EnvironmentSpec RequestENtity<VoteDT0> veteRequest = RequestEntity.post(votesUrl).body(votesCasted[v])
v G resources ity vot = restTemplate.exchange(voteRequest, VoteDTO.class)
fBppRCaTa RS assertThat(voteRespense. getStatusCode()). isEqualTo(HttpStatus.CREATED)
target lastVote = Date.from(voteResponse.getBody().getDate()).toInstant() //put thru Date wash
2 env
T
i flattened-pom.xml '
ElectionResultsDTO newResults=wait_for_results(lastvote); []
1 testcontainers-votes-spock-ntest.iml then;
flattenec-pom aml then(newResults. getbate()) . isAfter0rEqualTo(lastvote)
% dockercompose-votes-example.iml then (newResults. getResults ().size())
A, dockercompose-votes-example (1).iml .isGreaterThanOrEqualTo(previousResults . getResults() .size()+votesCasted.length)
" ElectionCNSpec setup()
Run: ElectionCNSpec o —
P v@ L =T QK 23 v Tests
v TestResults as6oims [4
P - Eectionc 45601ms
& e Wil 15:15:20.687 [main] TWFO & [dock wp - 4
vote counted i election Jsaiams 15715:28.692 [main] DEBUG org.testcontainers.shaded.org.zeroturnaround.exec.ProcessExecutor - Executing [docker-compose, up, -d] in /Users/jin/proi/eiava-iavaee/ejava-springboot/ =
ot counted in election Jeame 15:15:28.696 [main] DEBUG org.testcontainers.shaded.org.zeroturnaround.exec.ProcessExecutor - Started Process(pid=37692, exitValue="not exited"] o
vote counted in election 643me 15:15:29.610 [Thread-3] INFO & [docker-compose] - Creating network "dockercompose-votesttrvaj_default” with the default driver -
test2 394ms| 15715:30.001 [Thread-3] INFO & [pose] - Creating P testtrv3j_activemg 1 ... =
test3 38ams 15:15:30.802 [Thread-3] INFO & [pose] - Creating P testtrv3j_mongo_1 L]
15:15:30.004 [Thread-3] INFO & [pose] - Creating i testtrv3j_postgres_1 ...
= 15:15:31.154 [Thread-3] INFO @& [docker-compose] -
15:15:31.155 [Thread-3] INFO & [pose] - Creating P testtrv3j_activemg 1 ... done
15:15:31.174 [Thread-3] INFO @& [docker-compose] -
é 15:15:31.174 [Thread-3] INFO & [pose] - Creating] testtrv3j_postgres_1 ... done
g 15:15:31.248 [Thread-3] INFO & [docker-compose] -
B 15:15:31.248 [Thread-3] INFO & [pose] - Creating i testtrv3j_mongo_1 o done
= 15 269 [Thread-3] INFO @ [pose] - Creating P testtrv3j_api_1
s 15 363 [Thread-3] INFO & [dock: pose]
5 15 363 [Thread-3] INFO & [pose] - Creating i testtrv3j_api 1 ... done 0
& 15:15:32.450 [main] DEBUG org.testcontainers.shaded.org.zeroturnaround.exec.WiaitForProcess - Process[pid=37692, exitValue=0] stopped with exit code 0 g
* 15:15:32.451 [main] INFO @ [docker-compose] - g
oGt | B &Rin| =T0D0 © giProvkms 4 5:Dcbug B Terminal 4, Buid QEventLog
[0 Tests passed: 5 (yesterday 316 PM) 681 LF UTF8 aspaces [vworking W

Figure 6. Example IDE Test Execution with Testcontainers and Docker Compose

4.1. Source Tree

The following shows the structure of the example integration module. We have already been
working with the Docker Compose files at the root level in the previous section. Those files can be
placed within the src directories if not being used interactively for developer commands — to keep
the root less polluted.

This is an integration test-only module, so there will be no application code in the src/main tree. I
took the opportunity to place common network helper code in the src/main tree to mimic what
might be packaged up into test module support JAR if we need this type of setup in multiple test
modules.

The src/test tree contains files that are specific to the specific integration tests performed. I also
went a step further and factored out a base test class and then copied the initial ElectionCNSpec test
case to demonstrate reuse within a test case and shutdown/startup in between test cases.

Example Integration Unit Test Tree

|-- alt-env

12

|-- docker-compose.override.yml
| -- docker-compose.yml
|

-- pom.xml
-- src
|-- main
| |-- java
| | ‘-- info
|] ‘-- votes
|| |-- ClientTestConfiguration.java
|] ‘-- VoterListener.java
| ‘-- resources
‘-- test
|-- groovy
| '-- info
| ‘-- votes
| |-- VotesEnvironmentSpec.groovy
| |-- ElectionCNSpec.groovy
| |-- Election2CNSpec.groovy
| ‘-~ Election3CNSpec.groovy
‘-- resources

‘-- application.properties

4.2. @SpringBootConfiguration

Configuration is being supplied to the tests by the ClientTestConfiguration class. The following
shows some traditional @Value property value injections that could have also been supplied through
a @ConfigurationProperties class. We want these values set to the assigned host information at
runtime.

Traditional @SpringBootConfiguration

9

public class ClientTestConfiguration {
("${it.server.host:localhost}")
private String host; @
("${it.server.port:9090}")
private int port; @

@ value is commonly localhost

@ value is dynamically generated at runtime

4.3. Traditional @Bean Factories

The configuration class supplies a traditional set of @Bean factories with base URLs to the two

13

services. We want the later two URIs injected into our test. So far so good.

@Bean Factories

//public class ClientTestConfiguration { ...

public URI baseUrl() {
return UriComponentsBuilder.newInstance()
.scheme("http").host(host).port(port).build().toUri();
+

public URI votesUr1(URI baseUrl) {
return UriComponentsBuilder.fromUri(baseUrl).path("api/votes")
.build().toUri();
+

public URI electionsUr1(URI baseUrl) {
return UriComponentsBuilder.fromUri(baseUrl).path("api/elections")
.build().toUri();
+

public RestTemplate anonymousUser(RestTemplateBuilder builder) {
RestTemplate restTemplate = builder.build();
return restTemplate;

4.4. DockerComposeContainer

In order to obtain the assigned port information required by the URI injections, we first need to
define our network container. The following shows a set of static helper methods that locates the
Docker Compose file, instantiates the Docker Compose network container, assigns it a project name,
and exposes container port 8080 from the API to a random available host port.

During network startup, Testcontainers will also wait for network activity on that port before
returning control back to the test.

Creating the DockerComposeContainer

public static File composeFile() {
File composeFile = new File("./docker-compose.yml"); @®
Assertions.assertThat(composeFile.exists()).isTrue();
return composeFile;

}

public static DockerComposeContainer testEnvironment() {
DockerComposeContainer env =
new DockerComposeContainer("dockercompose-votes", composeFile())
.withExposedService("api", 8080);
return env;

14

@ Testcontainers will fail if Docker Compose file reference does not include an explicit parent
directory (i.e., ./ is required)

Mapped Volumes may require additional settings

Testcontainers automatically detects whether the test is being launched from
within or outside a Docker image (outside in this example). Some additional

o tweaks to the Docker Compose file are required only if disk volumes are being
mapped. These tweaks are called forming a "wormhole" to have Docker spawn
sibling containers and share resources. We are not using volumes and will not be
covering the wormhole pattern here.

4.5. @SpringBootTest

The following shows an example @SpringBootTest declaration. The test is a pure client to the server-
side and contains no service web tier. The configuration was primarily what I just showed
you — being primarily based on the URISs.

The test uses an optional @Stepwise orchestration for tests in case there is an issue sharing the dirty
service state that a known sequence can solve. This should also allow for a lengthy end-to-end
scenario to be broken into ordered steps along test method boundaries.

Here is also where the URIs are being injected —but we need our network started before we can
derive the ports for the URIs.

Example @SpringBootTest Declaration

(classes = [ClientTestConfiguration.class],
webEnvironment = SpringBootTest.WebEnvironment.NONE)

abstract class VotesEnvironmentSpec extends Specification {
protected RestTemplate restTemplate
protected URI votesUrl
protected URI electionsUrl
def setup() {

log.info("votesUr1={}", votesUrl) @®
log.info("electionsUr1={}", electionsUrl)

@ URI injections — based on dynamic values — must occur before tests

15

https://www.testcontainers.org/supported_docker_environment/continuous_integration/dind_patterns/#docker-compose-example
https://www.testcontainers.org/supported_docker_environment/continuous_integration/dind_patterns/#docker-compose-example

4.6. Spock Network Management

Testcontainers management within Spock is more manual that with JUnit — mostly because Spock
does not provide first-class framework support for static variables. No problem, we can find many
ways to get this to work. The following shows the network container being placed in a @Shared
property and started/stopped at the Spec level.

Set System Property in setupSpec()

@

protected DockerComposeContainer env = ClientTestConfiguration.testEnvironment()

def setupSpec() {
env.start() @

}
def cleanupSpec() {

env.stop() ®
}

@ network is instantiated and stored in a @Shared variable accessible to all tests
 test case initialization starts the network

® test case cleanup stops the network

But what about the dynamically assigned port numbers? We have three ways that can be used to
resolve them.

4.7. Set System Property

During setupSpec, we can set System Properties to be used when forming the Spring Context for
each test.

Set System Property in setupSpec() Option

def setupSpec() {
env.start() @
System.setProperty("it.server.port",

+env.getServicePort("api", 8080));

@ after starting network, dynamically assigned port number obtained and set as a System Property
for individual test cases

In hindsight, this looks like a very concise way to go. However, there were two other options
available that might be of interest in case they solve other issues that arise elsewhere.

4.8. ApplicationContextInitializer

A more verbose and likely legacy Spring way of adding the port values is through a Spring
ApplicationContextInitializer that can get added to the Spring application context using the

16

@ContextConfiguration annotation and some static constructs within the Spock test.

The network container gets initialized —like usual —except a reference to the container gets
assigned to a static variable where the running container can be inspected for dynamic values
during an initialize() callback.

ApplicationContextInitializer Option

import org.springframework.context.ApplicationContextInitializer
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.boot.test.util.TestPropertyValues;

(...

(initializers = Initializer.class) @

abstract class VotesEnvironmentSpec extends Specification {
private static DockerComposeContainer staticEnv @
static class Initializer ®
implements ApplicationContextInitializer<ConfigurableApplicationContext> {

void initialize(ConfigurableApplicationContext ctx) {
TestPropertyValues values = TestPropertyValues.of(
"it.server.port=" + staticEnv.getServicePort("api", 8080))
values.applyTo(ctx)

protected DockerComposeContainer env = ClientTestConfiguration.testEnvironment()
def setupSpec() {

staticEnv = env @

env.start()

@ static variable declared to hold reference to singleton network
@ @Shared network assigned to static variable

® Initializer class defined to obtain network information from network and inject into test
properties

@ Initializer class registered with Spring application context

4.9. DynamicPropertySource

A similar, but more concise way to leverage the callback approach is to leverage the newer Spring
@DynamicPropertySource construct. At a high level —nothing has changed with the management of
the network container. Spring simply eliminated the need to create the boilerplate class, etc. when
supplying properties dynamically.

17

DynamicPropertySource Option

import org.springframework.test.context.DynamicPropertyRegistry
import org.springframework.test.context.DynamicPropertySource

private static DockerComposeContainer staticEnv @
®
static void properties(DynamicPropertyRegistry registry) {
registry.add("it.server.port", ()->staticEnv.getServicePort("api", 8080));
}

protected DockerComposeContainer env = ClientTestConfiguration.testEnvironment()
def setupSpec() {

staticEnv = env @

env.start()

@ static variable declared to hold reference to singleton network
@ @Shared network assigned to static variable

3 @DynamicPropertySource defined on a static method to obtain network information from network
and inject into test properties

4.10. Resulting Test Initialization Output

The following shows an example startup prior to executing the first test. You will see TestContainers
start Docker Compose in the background and then wait close to ~12 seconds for the API port 8080 to
become active.

Maven/Spock Test Startup

13:52:28.467 DEBUG 0 [docker-compose] - Set env COMPOSE_FILE=
.../dockercompose-votes-example/testcontainers-votes-spock-ntest/./docker-

compose.yml

13:52:28.467 INFO [[docker-compose] - Local Docker Compose is running command: up -d

13:52:28.472 DEBUG org.testcontainers.shaded.org.zeroturnaround.exec.ProcessExecutor -
Executing [docker-compose, up, -d]

13:52:28.996 INFO 0 [docker-compose] - Creating network "dockercompose-
votesdkakfi_default" with the default driver

INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_mongo_1 ...
INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_postgres_1 ...
INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_activemq_1 ...

INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_activemq_1 ... done
INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_mongo_1 ... done
INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_postgres_1 ... done
INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_api_1

INFO 0 [docker-compose] - Creating dockercompose-votesdkakfi_api_1 ... done

13:52:30.803 DEBUG org.testcontainers.shaded.org.zeroturnaround.exec.WaitForProcess -

18

Process...

13:52:30.804 INFO 0 [docker-compose] - Docker Compose has finished running

... (waiting for containers to start)

13:52:45.100 DEBUG

org.springframework.test.context.support.DependencyInjectionTestExecutionlListener -
:: Spring Boot :: (v2.3.2.RELEASE)

At this point, we are ready to use normal ‘restTemplate' or ‘Web(Client' calls to
test our interface to the overall application.

13:52:48.031 VotesEnvironmentSpec votesUrl=http://localhost:32838/api/votes
13:52:48.032 VotesEnvironmentSpec electionsUrl=http://localhost:32838/api/elections

19

Chapter 5. Additional Waiting

Testcontainers will wait for the exposed port to become active. We can add additional wait tests to
be sure the network is in a ready state to be tested. The following adds a check for the two URLSs to

return a successful response.

Example Wait For URL

def setup() {

/**

* wait for various events relative to our containers

*/

env.waitingFor("api", Wait.forHttp(votesUrl.toString())) @
env.waitingFor("api”, Wait.forHttp(electionsUrl.toString()))

@ test setup holding up start of test for two API URL calls to be successful

20

Chapter 6. Executing Commands

If useful, we can also invoke commands within the running network containers at points in the test.
The following shows a CLI command invoked against each database container that will output the

current state at this point in the test.
Example Execute Commands

/**

* run sample commands directly against containers

*/

ContainerState mongo = (ContainerState) env.getContainerByServiceName("mongo_1")
.orElseThrow()

ExecResult result = mongo.execInContainer("mongo”, M
"-u", "admin", "-p", "secret", "--authenticationDatabase", "admin",

"--eval", "db.getSiblingDB('votes_db').votes.find()");
log.info("voter votes = {}", result.getStdout()) @

ContainerState postgres = (ContainerState) env.getContainerByServiceName("postgres_1")
.orElseThrow()
result = postgres.execInContainer("psql”,
"-U", "postgres",
"-¢", "select * from vote");
log.info("election votes = {}", result.getStdout())

@ executing shell command inside running container in network

@ obtaining results in stdout

6.1. Example Command Output

The following shows the output of the standard output obtained from the two containers after
running the CLI query commands.

Example Command Output

14:32:15.075 ElectionCNSpec#setup:67 voter votes = MongoDB shell version v4.4.0

connecting to:
mongodb://127.0.0.1:27017/7authSource=admin&compressors=disabled&gssapiServiceName=mon
godb

Implicit session: session { "id" : UUID("a824b7b8-634a-426b-8d21-24c5680864f6") }

MongoDB server version: 4.4.0

{ "_id" : ObjectId("5f382a2c62cb@d4f36d96cfa"),

"date" : ISODate("2020-08-15T18:32:12.7067Z"),

"source" : "684c586f...",

"choice" : "quisp-82...",

"_class" : "info.ejava.examples.svc.docker.votes.dto.VoteDTO" }
{ "_id" : ObjectId("5f382a2d62cb@d4f36d96cfb"),

"date" : ISODate("2020-08-15T18:32:13.511Z"),

21

22

"source" : "df3a973a...",

"choice" : "quake-5e...",
"_class" : "info.ejava.examples.svc.docker.votes.dto.VoteDTO" }

14:32:15.263 main INFO i.e.e.svc.docker.votes.ElectionCNSpec#isetup:73 election
votes =

id | choice | date | source
------------------------- fhm e o e e b e e e e e e el e e
5f382a2c62cb0d4f36d96cfa | quisp-82... | 2020-08-15 18:32:12.706 | 684c586f...
5f382a2d62cb0d4f36d96cfb | quake-5e... | 2020-08-15 18:32:13.511 | df3a973a...

&é.rows)

Chapter 7. Client Connections

Although an interesting and potentially useful feature to be able to execute a random shell
command against a running container under test—it can be very clumsy to interpret the output
when there is another way. We can — instead — establish a resource client to any of the services we
need additional state from.

The following will show adding resource client capabilities that were originally added to the API
server. If necessary, we can use this low-level access to trigger specific test conditions or evaluate
something performed.

7.1. Maven Dependencies

The following familiar Maven dependencies can be added to the pom.xml to add the resources
necessary to establish a client connection to each of the three back-end resources.

Client Connection Maven Dependencies

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-activemg</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
</dependency>

7.2. Hard Coded Application Properties

We can simply add the following hard-coded resource properties to a property file since this is
static information necessary to complete the connections.

Hard Coded Properties

#activemq
spring.jms.pub-sub-domain=true

#postgres

spring.datasource.driver-class-name=org.postgresql.Driver
spring.datasource.username=postgres

23

spring.datasource.password=secret

However, we still will need the following properties added that consist of dynamically assigned
values.

Dynamic Properties Needed

spring.data.mongodb.uri
spring.activemq.broker-url
spring.datasource.url

7.3. Dynamic URL Helper Methods

The following helper methods are used to form a valid URL String once the hostname and port
number are known.

Dynamic URL Helper Methods

public static String mongoUr1(String host, int port) {
return String.format("mongodb://admin:secret@%s:%d/votes_db?authSource=admin",
host, port);
}
public static String jmsUrl(String host, int port) {
return String.format("tcp://%s:%s", host, port);
}
public static String jdbcUrl(String host, int port) {
return String.format("jdbc:postgresql://%s:%d/postgres"”, host, port);

7.4. Adding Dynamic Properties

The hostname and port number(s) can be obtained from the running network and supplied to the
Spring context using one of the three techniques shown earlier (System.setProperty,
ConfigurableApplicationContext, or DynamicPropertyRegistry). The following shows the
DynamicPropertyRegistry technique.

Adding Dynamic Properties

public static void initProperties(@

DynamicPropertyRegistry registry, DockerComposeContainer env) {
registry.add("it.server.port", ()->env.getServicePort("api", 8080));
registry.add("spring.data.mongodb.uri", ()-> mongoUr1(

env.getServiceHost("mongo", null),
env.getServicePort("mongo", 27017)

)

registry.add("spring.activemq.broker-url", ()->jmsUr1(
env.getServiceHost("activemq", null),
env.getServicePort("activemg", 61616)

));

24

registry.add("spring.datasource.url", ()->jdbcUr1(
env.getServiceHost("postgres", null),
env.getServicePort("postgres", 5432)

));

® helper method called from @ynamicPropertySource callback in unit test

7.5. Adding JMS Listener

We can add a class to subscribe and listen to the votes topic by declaring a @Component with a
method accepting a JMS TextMessage and annotated with @JmsListener. The following example just
prints debug messages of the events and counts the number of messages received.

Example JMS Listener

import org.springframework.jms.annotation.JmsListener;
import javax.jms.TextMessage;

public class VoterListener {
private AtomicInteger msgCount=new AtomicInteger(0);

(destination = "votes")
public void receive(TextMessage msg) throws JMSException {
log.info("jmsMsg={}, {}", msgCount.incrementAndGet(), msg.getText());

}

We also need to add the JMS Listener @Component to the Spring application context using the
@SpringBootTest.classes property

Adding JMS Listener to Application Context

(classes = [ClientTestConfiguration.class, VoterListener.class],

7.6. Injecting Resource Clients

The following shows injections for the resource clients. I have already showed the details behind
the VoterlLister. That is wultimately supported by the JMS AutoConfiguration and the
spring.activemq.broker-url property.

The MongoClient and JdbcClient are directly provided by the Mongo and JPA AutoConfiguration and
the spring.data.mongodb.uri and spring.datasource.url properties.

25

Inject Resource Clients

protected MongoClient mongoClient
protected VoterListener listener

protected JdbcTemplate jdbcTemplate

7.7. Resource Client Calls

The following shows an example set of calls that simply obtains document/message/row counts.
However, with that capability demonstrated — much more is easily possible.

Example Resource Client Calls

/**

* connect directly to explosed port# of images to obtain sample status

*/

log.info("mongo client vote count={}",
mongoClient.getDatabase("votes_db").getCollection("votes").countDocuments())

log.info("activemq msg={}", listener.getMsgCount().get())

log.info("postgres client vote count={}",
jdbcTemplate.queryForObject("select count (*) from vote", Long.class))

The following shows the output from the example resource client calls

Example Resource Call Output
ElectionCNSpec#fsetup:54 mongo client vote count=18

ElectionCNSpec#isetup:55 activemq msg=18
ElectionCNSpec#fsetup:57 postgres client vote count=18

26

Chapter 8. Test Hierarchy

Much of what I have covered can easily go into a helper class or test base class and potentially be
part of a test dependency library if the amount of integration testing significantly increases and
must be broken out.

8.1. Network Helper Class

The following summarizes the helper class that can encapsulate the integration between
Testcontainers and Docker Compose. This class is not specific to running in any one test framework.

ClientTestConfiguration Helper Class

public class ClientTestConfiguration { @

public static File composeFile() { ...

public static DockerComposeContainer testEnvironment() { ...

public static void initProperties(DynamicPropertyRegistry registry,
DockerComposeContainer env) { ...

public static void initProperties(DockerComposeContainer env) { ...

public static void initProperties(ConfigurableApplicationContext ctx,
DockerComposeContainer env) { ...

public static String mongoUrl(String host, int port) { ...

public static String jmsUrl(String host, int port) { ...

public static String jdbeUrl(String host, int port) { ...

@ Helper class can encapsulate details of network without ties to actual test framework

8.2. Integration Spec Base Class

The following summarizes the base class that encapsulates starting/stopping the network and any
helper methods used by tests. This class is specific to operating tests within Spock.

VotesEnvironmentSpec Test Base Class

abstract class VotesEnvironmentSpec extends Specification { @
def setupSpec() {
configureEnv(env)

void configureEnv(DockerComposeContainer env) {} @

def cleanupSpec() { ...

def setup() { ...

public ElectionResultsDTO wait_for_results(Instant resultTime) { ...
public ElectionResultsDTO get_election_counts() { ...

@ test base class integrates helper methods in with test framework

@ extra environment setup call added to allow subclass to configure network before started

27

8.3. Specialized Integration Test Classes

The specific test cases can inherit all the setup and focus on their individual tests. Note that the
example I provided uses the same running network within a test case class (i.e., all test methods in
a test class share the same network state). Separate test cases use fresh network state (i.e., the
network is shutdown, removed, and restarted between test classes).

Example Test Case
class ElectionCNSpec extends VotesEnvironmentSpec { @

def void configureEnv(DockerComposeContainer dc) { ...
def cleanup() { ...

def setup() { ...

def "vote counted in election"() { ...

def "test 2"() { ...

def "test 3"() { ...

@ concrete test cases provide specific tests and extra configuration, setup, and cleanup specific to
the tests

Example Test Case 2

class Election2CNSpec extends VotesEnvironmentSpec {
def "vote counted in election"() { ...
def "test 2"() { ...
def "test 3"() { ...

8.4. Test Execution Results

The following image shows the completion results of the integration tests. Once thing to note with
Spock is that it only seems to attribute time to a test setup/execution/cleanup and not to the test
case’s setup and cleanup. Active MQ is very slow to shutdown and there is easily 10-20 seconds in
between test cases that is not depicted in the timing results.

28

Run: info.gjava.examples.sve.dockervotes in testcontainers-votes-s

P vi@ 121z = = QX 17 &
'3 ~ « Election2CNSpec 3s 858ms
- *~ + yote counted in election 3s146ms
+" vote counted in election 25118 ms
+" vote counted in election 637 ms
+" vote counted in election 491 ms
+ test 2 366ms
+ test3 367 ms
- “ +" Election3CNSpec 45 390ms
= ~ +" vote counted in election 35121 ms
» +" vote counted in election 15 844 ms
+" vote counted in election 677 ms
+" vote counted in election 600 ms
" test 2 730ms
+ test3 539 ms
~ " ElectionCNSpec 35 95ms
*~ + yote counted in election 25387 ms
+" vote counted in election 15 362 ms
+" vote counted in election 472ms
+" vote counted in election 563 ms
+ test 2 366 ms
+ test3 343ms

Figure 7. Test Execution Results

Chapter 9. Summary

This lecture covered a summary of capability for Docker Compose and Testcontainers integrated
into Spock to implement integrated unit tests. The net result is a seamless test environment that can
verify that a network of components—further tested in unit tests—integrate together to
successfully satisfy one or more end-to-end scenarios. For example, it was not until integration
testing that I realized my JMS communications was using a queue versus a topic.

In this module we learned:
* to identify the capability of Docker Compose to define and implement a network of virtualized

services running in Docker

* to identify the capability of Testcontainers to seamlessly integrate Docker and Docker Compose
into unit test frameworks including Spock

* to author end-to-end, unit integration tests using Spock, Testcontainers, Docker Compose, and
Docker

* to implement inspections of running Docker images
* to implement inspects of virtualized services during tests
* to instantiate virtualized services for use in development

» to implement a hierarchy of test classes to promote reuse

30

	Testcontainers with Spock
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Background
	2.1. Application Background
	2.2. Integration Testing Approach
	2.3. Docker Compose
	2.4. Testcontainers

	Chapter 3. Docker Compose
	3.1. Docker Compose File
	3.2. Start Network
	3.3. Access Logs
	3.4. Execute Commands
	3.5. Shutdown Network
	3.6. Override/Extend Docker Compose File
	3.7. Using Mapped Host Ports
	3.8. Supplying Properties
	3.9. Specifying an Override File
	3.10. Override File Result

	Chapter 4. Testcontainers and Spock
	4.1. Source Tree
	4.2. @SpringBootConfiguration
	4.3. Traditional @Bean Factories
	4.4. DockerComposeContainer
	4.5. @SpringBootTest
	4.6. Spock Network Management
	4.7. Set System Property
	4.8. ApplicationContextInitializer
	4.9. DynamicPropertySource
	4.10. Resulting Test Initialization Output

	Chapter 5. Additional Waiting
	Chapter 6. Executing Commands
	6.1. Example Command Output

	Chapter 7. Client Connections
	7.1. Maven Dependencies
	7.2. Hard Coded Application Properties
	7.3. Dynamic URL Helper Methods
	7.4. Adding Dynamic Properties
	7.5. Adding JMS Listener
	7.6. Injecting Resource Clients
	7.7. Resource Client Calls

	Chapter 8. Test Hierarchy
	8.1. Network Helper Class
	8.2. Integration Spec Base Class
	8.3. Specialized Integration Test Classes
	8.4. Test Execution Results

	Chapter 9. Summary

