RDBMS

jim stafford

Fall 2022 v2021-02-01: Built: 2022-12-07 06:13 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Schema Concepts
2.1. RDBMS Tables/Columns
2.2. Column Data
2.3. Column Types
2.4. Example Column Types
2.5. Constraints
2.6. Primary Key
2.7. UUID
2.8. Database Sequence
3. Example POJO
4. Schema
4.1. Schema Creation
4.2. Example Schema
5. Schema Command Line Population
5.1. Schema Result
5.2. List Tables
5.3. Describe Song Table
6. RDBMS Project
6.1. RDBMS Project Dependencies
6.2. RDBMS Access Objects
6.3. RDBMS Connection Properties
7. Schema Migration
7.1. Flyway Automated Schema Migration
7.2. Flyway Schema Source
7.3. Flyway Automatic Schema Population
7.4. Database Server Profiles
7.5. Dirty Database Detection
7.6. Flyway Migration
8. SQL CRUD Commands
8.1. H2 Console Access
8.2. Postgres CLI Access
8.3. Next Value for Sequence
8.4. SQL ROW INSERT
8.5. SQL SELECT
8.6. SQL ROW UPDATE

© © © 0 U1 U b W W NN N DD DN P =,

[T N T N T N T G e e S Yy
_ O O O W ©W W 00 I 9 9 0o 0o O B b W W N N R -

8.7.SQL ROW DELETE. 21

8.8. RDBMS Transaction 22
0. DB . e 24
9.1. JDBC DataSOurCe. e 24
9.2. Obtain Connection and Statement 24
9.3.JDBC Create Example. 25
9.4.SetID EXample 26
9.5.JDBC Select Example 26
0.6. NeXTId. 27
0.7.DIaleCt 27

10, SUMIMATY . . oo 29

Chapter 1. Introduction

This lecture will introduce working with relational databases with Spring Boot. It includes the
creation and migration of schema, SQL commands, and low-level application interaction with JDBC.

1.1. Goals

The student will learn:

* to identify key parts of a RDBMS schema

to instantiate and migrate a database schema
* to automate database schema migration
* to interact with database tables and rows using SQL

* to identify key aspects of Java Database Connectivity (JDBC) API

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1. define a database schema that maps a single class to a single table
. implement a primary key for each row of a table

. define constraints for rows in a table

. automate database schema migration with the Flyway tool

2

3

4. define an index for a table

5

6. manipulate table rows using SQL commands
7

. identify key aspects of a JDBC call

Chapter 2. Schema Concepts

Relational databases are based on a set of explicitly defined tables, columns, constraints, sequences,
and indexes. The overall structure of these definitions is called schema. Our first example will be a

single table with a few columns.

2.1. RDBMS Tables/Columns

A table is identified by a name and contains a flat set of fields called columns. It is common for the
table name to have an optional scoping prefix in the event that the database is shared (e.g., during
testing or a minimal deployment).

In this example, the song table is prefixed by a reposongs_ name that identifies which course
example this table belongs to.

Example Table and Columns

Table "public.reposongs_song" @
Column |

@ table named reposongs_song, part of the reposongs schema
@ column named id

® column named title

2.2. Column Data

Individual tables represent a specific type of object and their columns hold the data. Each row of
the song table will always have an id, title, artist, and released column.

Example Table/Column Data

id | title | artist | released
BT LT TR fmmmmm e fmmmmmmmmmm e
1 | Noli Me Tangere | Orbital | 2002-07-06
2 | Moab Is My Washpot | Led Zeppelin | 2005-03-26
3 | Arms and the Man | Parliament Funkadelic | 2019-03-11

2.3. Column Types

Each column is assigned a type that constrains the type and size of value they can hold.

Song Column Types

Table "public.reposongs_song"

Column | Type |
—————————— ey
id | integer | @
title | character varying(255) | @
artist | character varying(255) |
released | date | @

@ id column has type integer
@ title column has type varchar that is less than or equal to 255 characters

® released column has type date

2.4. Example Column Types

The following lists several common example column data types. A more complete list of column

types can be found on the w3schools web site. Some column types can be vendor-specific.

Table 1. Example Column Types

Category Example Type

Character Data e« char(size) - a fixed length set of characters
 varchar(size) - a variable length of characters
* blob(size), clob(size) - a large field of binary or textual data

Boolean/ * boolean - true/false value

Numeric data

* int(size), bigint(size) - numeric value

* numeric(size, digits) and/or decimal(size, digits) - fixed-point number. e.g.
money. numeric definition is more strict in size. decimal definition is "at least"
in size. In practice — they tend to be the same.

Temporal data « date - date without time
* time - time without date

 datetime - a specific time on a specific date. Timezone is commonly UTC

Character field maximum size is vendor-specific

o The maximum size of a char/varchar column is vendor-specific, ranging from 4000
characters to much larger values.

2.5. Constraints

Column values are constrained by their defined type and can be additionally constrained to be
required (not null), unique (e.g., primary key), a valid reference to an existing row (foreign key),
and various other constraints that will be part of the total schema definition.

https://www.w3schools.com/sql/sql_datatypes.asp
https://learnsql.com/blog/numeric-decimal-data-types-sql

The following example shows a required column and a unique primary key constraint.

Example Column Types

postgres=# \d reposongs_song
Table "public.reposongs_song"

Column | Type | Nullable |
—————————— T T e
id | integer | not null |@D
title | character varying(255) |

artist | character varying(255) |

released | date | |
Indexes:

"song_pk" PRIMARY KEY, btree (id) @

@ column 1id is required

@ column id constrained to hold a unique (primary) key for each row

2.6. Primary Key

A primary key is used to uniquely identify a specific row within a table and can also be the target of
incoming references (foreign keys). There are two origins of a primary key: natural and surrogate.
Natural primary keys are derived directly from the business properties of the object. Surrogate
primary keys are externally generated and added to the business properties.

The following identifies the two primary key origins and lists a few advantages and disadvantages.

Table 2. Primary Key Origins

Primary Natural PKs Surrogate PKs

Key Origins

Description derived directly from business properties externally generated and added to object
of object

Example * employee ID (e123) centrally generated sequence number

* e-mail address (me@gmail.com) (1,2,3)

o distributed generated UuID
(594075a4-5578-459f-9091-
e7734d4f58ce)

Advantages °* no new fields are necessary * guaranteed to be unique

* ID can be determined before DB e« unique business properties permitted
insert to change (e.g. switch email address)

mailto:me@gmail.com

Primary Natural PKs Surrogate PKs
Key Origins

Disadvanta ¢ business properties for ID are each ¢ anew field must be added

es required .
8 q » visible sequences can be guessed and

* business properties for ID cannot deterministic increments can be used
change for size and rate measurement

* sometimes requires combining
multiple properties (i.e., "compound
primary Kkey")—which complicates
foreign keys

For this example, I am using a surrogate primary key that could have been based on either a UUID
or sequence number.

2.7. UUID

A UUID is a globally unique 128 bit value written in hexadecimal, broken up into five groups using
dashes, resulting in a 36 character string.

Example UUID

$ uuidgen | awk '{print tolower($0)}'
594075a4-5578-4591-9091-e7734d4f58ce

There are different versions of the algorithm, but each target the same structure and the negligible
chance of duplication. "' This provides not only a unique value for the table row, but also a unique
value across all tables, services, and domains.

The following lists a few advantages and disadvantages for using UUIDs as a primary key.

Table 3. UUID as Primary Key

UUID Advantages UUID Disadvantages
* globally unique * larger than needed to be unique for only a
o easier to search through logs containing table
information from many tables > requires more storage space
* can be generated anytime and anywhere » slower to compare relative to a smaller
integer value

o object does not have to wait to be
inserted into DB before having an o requires additional comparison time
ID — feature similar to natural keys

2.8. Database Sequence

A database sequence is a numeric value guaranteed to be unique by the database. Support for
sequences and the syntax used to work with them varies per database. The following shows an

example of creating, incrementing, and dropping a sequence in postgres.

postgres sequence value

postgres=# create sequence seq_a start 1 increment 1; @
CREATE SEQUENCE

postgres=# select nextval('seq_a'); @
nextval

postgres=# select nextval('seq_a');
nextval

postgres=# drop sequence seq_a;
DROP SEQUENCE

@ can define starting point and increment for sequence

@ obtain next value of sequence using a database query

Database Sequences do not dictate how unique value is used

Database Sequences do not dictate how the unique value is used. The caller can

o use that directly as the primary key for one or more tables or anything at all. The
caller may also use the returned value to self-generate IDs on its own (e.g., a page
offset of IDs). That is where the increment option can be of use.

2.8.1. Database Sequence with Increment

We can use the increment option to help maintain a 1:1 ratio between sequence and primary key
values — while giving the caller the ability to self-generate values within a increment window.

Database Sequence with Increment

postgres=# create sequence seq_b start 1 increment 100; @®
CREATE SEQUENCE

postgres=# select nextval('seq_b');

nextval

(1 row)

postgres=# select nextval('seq_b');
nextval

101 @
(1 row)

@ increment leaves a window of values that can be self-generated by caller

The database client calls nextval whenever it starts or runs out of a window of IDs. This can cause
gaps in the sequence of IDs.

[1] "Universally unique identifier", Wikipedia

https://en.wikipedia.org/wiki/Universally_unique_identifier

Chapter 3. Example POJO

We will be using an example Song class to demonstrate some database schema and interaction
concepts. Initially, I will only show the POJO portions of the class required to implement a business
object and manually map this to the database. Later, I will add some JPA mapping constructs to
automate the database mapping.

The class is a read-only value class with only constructors and getters. We cannot use the lombok
@Value annotation because JPA (part of a follow-on example) will require us to define a no
argument constructor and attributes cannot be final.

Song POJO being mapped to database

package info.ejava.examples.db.repo.jpa.songs.bo;

O]

public class Song {
private int id; @
private String title;
private String artist;
private LocalDate released;

@ each property will have a getter method() but the only way to set values is through the
constructor/builder

@ surrogate primary key will be used as a primary key

PQOJOs can be read/write

There is no underlying requirement to use a read-only POJO with JPA or any other

o mapping. However, doing so does make it more consistent with DDD read-only
entity concepts where changes are through explicit save/update calls to the
repository versus subtle side-effects of calling an entity setter().

https://www.thereformedprogrammer.net/three-approaches-to-domain-driven-design-with-entity-framework-core/
https://www.thereformedprogrammer.net/three-approaches-to-domain-driven-design-with-entity-framework-core/

Chapter 4. Schema

To map this class to the database, we will need the following constructs:

* atable
* a sequence to generate unique values for primary keys
* an integer column to hold id
» 2 varchar columns to hold title and artist
 a date column to hold released
The constructs are defined by schema. Schema is instantiated using specific commands. Most core

schema creation commands are vendor neutral. Some schema creation commands (e.g., IF EXISTS)
and options are vendor-specific.

4.1. Schema Creation

Schema can be

* authored by hand,
* auto-generated, or

e a mixture of the two.

We will have the tooling necessary to implement auto-generation once we get to JPA, but we are not
there yet. For now, we will start by creating a complete schema definition by hand.

4.2. Example Schema

The following example defines a sequence and a table in our database ready for use with postgres.

Schema Creation Example (V1.0.0__initial schema.sql)

drop sequence IF EXISTS hibernate_sequence; @
drop table IF EXISTS reposongs_song;

create sequence hibernate_sequence start 1 increment 1; @
create table reposongs_song (

id int not null,

title varchar(255),

artist varchar(255),

released date,

constraint song_pk primary key (id)

)

comment on table reposongs_song is 'song database'; @
comment on column reposongs_song.id is 'song primary key';
comment on column reposongs_song.title is 'official song name';

comment on column reposongs_song.artist is 'who recorded song';
comment on column reposongs_song.released is 'date song released’;

create index idx_song_title on reposongs_song(title);

@ remove any existing residue
@ create new DB table(s) and sequence

® add descriptive comments

10

Chapter 5. Schema Command Line
Population

To instantiate the schema, we have the option to use the command line interface (CLI). The
following example connects to a database running within docker-compose. The psql CLI is executed
on the same machine as the database, thus saving us the requirement of supplying the password.
The contents of the schema file is supplied as stdin.

Schema Command Line Population

$ docker-compose up -d postgres
Creating ejava_postgres_1 ... done

$ docker-compose exec -T postgres psql -U postgres \ @ @

< .../src/main/resources/db/migration/V1.0.0_0__initial_schema.sql ®
DROP SEQUENCE

DROP TABLE

NOTICE: sequence "hibernate_sequence" does not exist, skipping
NOTICE: table "reposongs_song" does not exist, skipping

CREATE SEQUENCE

CREATE TABLE

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

@ running psql CLI command on postgres image
@ -T disables docker-compose pseudo-tty allocation

® reference to schema file on host

Pass file using stdin

a
Q The file is passed in through stdin using the "<" character. Do not miss adding the
"<" character.

The following schema commands add an index to the title field.

Additional Schema Index

$ docker-compose exec -T postgres psql -U postgres \
< .../src/main/resources/db/migration/V1.0.0_1__initial_indexes.sql
CREATE INDEX

5.1. Schema Result

We can log back into the database to take a look at the resulting schema. The following executes the

11

psql CLI interface in the postgres image.

Interactive Login to postgres

$ docker-compose exec postgres psql -U postgres

psql (12.3)
Type "help" for help.
#

5.2. List Tables

The following lists the tables created in the postgres database.

List Tables

postgres=# \d+
List of relations

Schema | Name | Type | Owner | Size | Description
-------- T T T T Tt T S L L LT
public | hibernate_sequence | sequence | postgres | 8192 bytes |

public | reposongs_song | table | postgres | 8192 bytes | song database
(2 rows)

5.3. Describe Song Table

Describe Song Table

postgres=# \d reposongs_song
Table "public.reposongs_song"

Column | Type | Collation | Nullable | Default
—————————— T B ST TR S
id | integer | | not null |

title | character varying(255) | | |

artist | character varying(255) | | |

released | date | | |
Indexes:

"song_pk" PRIMARY KEY, btree (id)
"idx_song_title" btree (title)

12

Chapter 6. RDBMS Project

Although it is common to execute schema commands interactively during initial development,
sooner or later they should end up documented in source file(s) that can help document the
baseline schema and automate getting to a baseline schema state. Spring Boot provides direct
support for automating schema migration—whether it be for test environments or actual
production migration. This automation is critical to modern dynamic deployment environments.
Lets begin filling in some project-level details of our example.

6.1. RDBMS Project Dependencies

To get our project prepared to communicate with the database, we are going to need a RDBMS-
based spring-data starter and at least one database dependency.

The following dependency example readies our project for JPA (a layer well above RDBMS) and to
be able to use either the postgres or h2 database.

* h2 is an easy and efficient in-memory database choice to base unit testing. Other in-memory
choices include HSQLDB and Derby databases.

* postgres is one of many choices we could use for a production-ready database

RDBMS Project Dependencies

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId> @

</dependency>

@

<dependency>
<groupld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactld>
<scope>runtime</scope>

</dependency>

<l-- schema management --> 3

<dependency>
<groupId>org.flywaydb</groupIld>
<artifactId>flyway-core</artifactId>
<scope>runtime</scope>

</dependency>

® brings in all dependencies required to access database using JPA (including APIs and Hibernate
implementation)

@ defines two database clients we have the option of using — h2 offers an in-memory server

13

https://www.h2database.com/html/main.html
http://hsqldb.org/
http://hsqldb.org/
https://en.wikipedia.org/wiki/Relational_database#Market_share

® brings in a schema management tool

6.2. RDBMS Access Objects

The JPA starter takes care of declaring a few key @Bean instances that can be injected into
components.

* javax.sql.DataSource is part of the standard JDBC API—which is a very mature and well-
supported standard

* javax.persistence.EntityManager is part of the standard JPA API—which is a layer above JDBC
and also a well-supported standard.

Key RDBMS Objects
private javax.sql.DataSource dataSource; @

private javax.persistence.EntityManager entityManager; @

@ DataSource defines a starting point to interface to database using JDBC

@ EntityManager defines a starting point for JPA interaction with the database

6.3. RDBMS Connection Properties

Spring Boot will make some choices automatically, but since we have defined two database
dependencies, we should be explicit. The default datasource is defined with the spring.datasource
prefix. The URL defines which client to use. The driver-class-name and dialect can be explicitly
defined, but can also be determined internally based on the URL and details reported by the live
database.

The following example properties define an in-memory h2 database.

h2 in-memory database properties

spring.datasource.url=jdbc:h2:mem:songs
#spring.datasource.driver-class-name=org.h2.Driver @

@ Spring Boot can automatically determine driver-class-name from provided URL

The following example properties define a postgres client. Since this is a server, we have other
properties —like username and password — that have to be supplied.

postgres server database client properties

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=secret
#spring.datasource.driver-class-name=org.postgresql.Driver

14

#spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

Driver can be derived from JDBC URL

In a normal Java application, JDBC drivers automatically register with the JDBC

o DriverManager at startup. When a client requests a connection to a specific JDBC
URL, the JDBC DriverManager interrogates each driver, looking for support for the
provided JDBC URL.

15

Chapter 7. Schema Migration

The schema of a project rarely stays constant and commonly has to migrate from version to
version. No matter what can be automated during development, we need to preserve existing data
in production and formal integration environments. Spring Boot has a default integration with
Flyway in order to provide ordered migration from version to version. Some of its features (e.g.,
undo) require a commercial license, but its open-source offering implements forward migrations
for free.

7.1. Flyway Automated Schema Migration

"Flyway is an open-source database migration tool". " It comes pre-integrated with Spring Boot
once we add the Maven module dependency. Flyway executes provided SQL migration scripts
against the database and maintains the state of the migration for future sessions.

7.2. Flyway Schema Source
By default, schema files "

* are searched for in the classpath:db/migration directory
o overridden using spring.flyway.locations property
> locations can be from the classpath and filesystem

> location expressions support {vendor} placeholder expansion
spring.flyway.locations=classpath:db/migration/common,classpath:db/migration/{vendor}

+ following a naming pattern of V<version>_ <name/comment>.sql (double underscore between
version and name/comment) with version being a period (".") or single underscore ("_")
separated set of version digits (e.g., V1.0.0_0, V1_0_0_0)

The following example shows a set of schema migration files located in the default, vendor neutral
location.

Schema Migration Target Folder

target/classes/

|-- application-postgres.properties

|-- application.properties

‘-- db

‘-~ migration

|-- V1.0.0_0__initial_schema.sql
|-- V1.0.0_1__initial_indexes.sql
‘-~ V1.1.0_0__add_artist.sql

16

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-execute-flyway-database-migrations-on-startup

7.3. Flyway Automatic Schema Population
Spring Boot will automatically trigger a migration of the files when the application starts.

The following example is launching the application and activating the postgres profile with the
client setup to communicate with the remote postgres database. The --db.populate is turning off
application level population of the database. That is part of a later example.

Active Database Server Profile

java -jar target/jpa-song-example-6.0.17-SNAPSHOT-bootexec.jar
--spring.profiles.active=postgres --db.populate=false

7.4. Database Server Profiles

By default, the example application will use an in-memory database.

application.properties

#th2
spring.datasource.url=jdbc:h2:mem:users

To use the postgres database, we need to fill in the properties within the selected profile.
application-postgres.properties

#postgres

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres

spring.datasource.username=postgres
spring.datasource.password=secret

7.5. Dirty Database Detection

If flyway detects a non-empty schema and no flyway table(s), it will immediately throw an
exception and the program terminates.

Flyway Detects an Error
FlywayException: Found non-empty schema(s) "public" but no schema history table.

Use baseline() or set baselineOnMigrate to true to initialize the schema history
table.

Keeping this simple, we can simply drop the existing schema.
Drop Existing

postgres=# drop table reposongs_song;

17

DROP TABLE
postgres=# drop sequence hibernate_sequence;
DROP SEQUENCE

7.6. Flyway Migration
With everything correctly in place, flyway will execute the migration.

The following output is from the console log showing the activity of Flyway migrating the schema of
the database.

Flyway Migration Debug Log Statements

VersionPrinter : Flyway Community Edition 7.1.1 by Redgate

DatabaseType : Database: jdbc:postgresql://localhost:5432/postgres (PostgreSQL 12.3)
DbValidate : Successfully validated 3 migrations (execution time 00:00.026s)
JdbcTableSchemaHistory : Creating Schema History table
"public"."flyway_schema_history" ...

DbMigrate : Current version of schema "public": << Empty Schema >>

DbMigrate : Migrating schema "public" to version "1.0.0.0 - initial schema"
DefaultSqlScriptExecutor : DB: sequence "hibernate_sequence" does not exist, skipping
DefaultSqlScriptExecutor : DB: table "reposongs_song" does not exist, skipping
DbMigrate : Migrating schema "public" to version "1.0.0.1 - initial indexes"

DbMigrate : Migrating schema "public" to version "1.1.0.0 - add artist"

DbMigrate : Successfully applied 3 migrations to schema "public" (execution time
00:00.190s)

[1] "Flyway Documentation",Flyway Web Page

[2] "Execute Flyway Database Migrations on Startup",docs.spring.io Web Site

18

https://flywaydb.org/documentation/
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-execute-flyway-database-migrations-on-startup

Chapter 8. SQL CRUD Commands

All RDBMS-based interactions are based on Structured Query Language (SQL) and its set of Data
Manipulation Language (DML) commands. It will help our understanding of what the higher-level
frameworks are providing if we take a look at a few raw examples.

SQL Commands are case-insensitive

All SQL commands are case-insensitive. Using upper or lower case in these
examples is a matter of personal/project choice.

8.1. H2 Console Access

When H2 is activated — we can activate the H2 user interface using the following property.

Activating H2 Console

spring.h2.console.enabled=true

Once the application is up and running, the following URL provides access to the H2 console.

Accessing H2 Console

http://localhost:8080/h2-console

Table 4. H2 Console Windows

& C @ localhost:8080/h2-console/login jsp?jsessionid=90832774f4ebb103e6849fb2792e3ct8 ¥ | & | BAuocommit “0 /0 | Maxrows:[1000] @ O, @ | * |Autocomplete [OF] Auto select [Onv] @)
[idbc:h2:memusers Run||Run Selected | Auto complete || Clear | SQL statement:
English v| Preferences Tools Help = [REPOSONGS_SONG call next value for hibernate_sequence
® 0 Ib
o] s
= # [RELEASED
§ = [ARTIST
Saved Seftings: | Generic H2 (Embedded) v % |3, Indexes
. | % [flyway_schema_history
Setting Name: ‘Genen‘c H2 (Embedded) ‘ Save Remove % () INFORMATION_SCHEMA

& 121 Sequences
«=« HIBERNATE_SEQUENCE
4 i) Users

(D) H2 1.4.200 (2019-10-14)

call next value for hibenate_sequence;
NEXT VALUE FOR PUBLIC.HIBERNATE_SEQUENCE
1
JDBC URL: idbc:h2: "

‘Jdbc‘hz.mem.users ‘ (1row, 39 ms)

Driver Class: ‘ org.h2.Driver ‘

User Name: ‘ sa ‘

Password: ‘ ‘

Connect Test Connection

8.2. Postgres CLI Access
With postgres activated, we can access the postgres server using the psql CLI.

Postgres Command Line Interface Access

$ docker-compose exec postgres psql -U postgres
psql (12.3)
Type "help" for help.

19

postgres=#

8.3. Next Value for Sequence

We created a sequence in our schema to managed unique IDs. We can obtain the next value for that
sequence using a SQL command. Unfortunately, obtaining the next value for a sequence is vendor-
specific. The following two examples show examples for postgres and h2.

postgres sequence next value example

select nextval('hibernate_sequence');
nextval

h2 sequence next value example
call next value for hibernate_sequence;

1

8.4. SQL ROW INSERT

We add data to a table using the INSERT command.

SQL INSERT Example

insert into reposongs_song(id, title, artist, released)
values (6,'Don'"'t Worry Be Happy', 'Bobby McFerrin', '1988-08-05');

Use two single-quote characters to embed single-quote

o The single-quote character is used to delineate a string in SQL commands. Use two
single-quote characters to express a single quote character within a command (e.g.,
Don''t).

8.5. SQL SELECT

We output row data from the table using the SELECT command;

SQL SELECT Wildcard Example

select * from reposongs_song;

6 | Don't Worry Be Happy | Bobby McFerrin | 1988-08-05

20

7 | Sledgehammer | Peter Gabriel | 1986-05-18

The previous example output all columns and rows for the table in a non-deterministic order. We
can control the columns output, the column order, and the row order for better management. The
next example outputs specific columns and orders rows in ascending order by the released date.

SQL SELECT Columns and Order Example

select released, title, artist from reposongs_song order by released ASC;
released | title | artist
____________ +______________________+________________

1986-05-18 | Sledgehammer | Peter Gabriel
1988-08-05 | Don't Worry Be Happy | Bobby McFerrin

8.6. SQL ROW UPDATE

We can change column data of one or more rows using the UPDATE command.
The following example shows a row with a value that needs to be changed.

Incorrect Row

insert into reposongs_song(id, title, artist, released)
values (8, 'October', 'Earth Wind and Fire', '1978-11-18");

The following snippet shows updating the title column for the specific row.

SQL UDPATE Example

update reposongs_song set title='September' where id=8;

The following snippet uses the SELECT command to show the results of our change.
SQL UPDATE Result
select * from reposongs_song where 1d=8;
id | title | artist | released

T frommm e e e e e from e
8 | September | Earth Wind and Fire | 1978-11-18

8.7. SQL ROW DELETE

We can remove one or more rows with the DELETE command. The following example removes a
specific row matching the provided ID.

21

SQL DELETE Example

delete from reposongs_song where id=8;
DELETE 1

select * from reposongs_song;

id | title | artist | released
e T E Fmmmmmm e Fmmmmm e
6 | Don't Worry Be Happy | Bobby McFerrin | 1988-08-05
7 | Sledgehammer | Peter Gabriel | 1986-05-18

8.8. RDBMS Transaction

Transactions are an important and integral part of relational databases. The transactionality of a

database are expressed in "ACID" properties "

» Atomic - all or nothing. Everything in the unit acts as a single unit
» Consistent - moves from one valid state to another
* Isolation - the degree of visibility/independence between concurrent transactions
* Durability - a committed transaction exists
By default, most interactions with the database are considered individual transactions with an

auto-commit after each one. Auto-commit can be disabled so that multiple commands can be part of
the same, single transaction.

8.8.1. BEGIN Transaction Example

The following shows an example of a disabling auto-commit in postgres by issuing the BEGIN
command. Every change from this point until the COMMIT or ROLLBACK is temporary and is
isolated from other concurrent transactions (to the level of isolation supported by the database and
configured by the connection).

BEGIN Transaction Example

BEGIN; @
BEGIN

insert into reposongs_song(id, title, artist, released)
values (7, 'Sledgehammer', 'Peter Gabriel', '1986-05-18');
INSERT 0 1

select * from reposongs_song;

id | title | artist | released | foo
S fommmemmmmemmea- fommmmmmmen- fomme
6 | Don't Worry Be Happy | Bobby McFerrin | 1988-08-05 |

7 | Sledgehammer | Peter Gabriel | 1986-05-18 | @

22

(3 rows)

@ new transaction started when BEGIN command issued

@ commands within a transaction will be able to see uncommitted changes from the same
transaction

8.8.2. ROLLBACK Transaction Example

The following shows how the previous command(s) in the current transaction can be rolled
back — as if they never executed. The transaction ends once we issue COMMIT or ROLLBACK.

ROLLBACK Example

ROLLBACK; @™
ROLLBACK

select * from reposongs_song; @
id | title | artist | released
TR Hmmmm e tmmmmm -
6 | Don't Worry Be Happy | Bobby McFerrin | 1988-08-05

@ transaction ends once COMMIT or ROLLBACK command issued

@ commands outside of a transaction will not be able to see uncommitted and rolled back changes
of another transaction

[1] "ACID Wikipedia Page", Wikipedia

23

https://en.wikipedia.org/wiki/ACID

Chapter 9. JDBC

With database schema in place and a key amount of SQL under our belt, it is time to move on to
programmatically interacting with the database. Our next stop is a foundational aspect of any Java
database interaction, the Java Database Connectivity (JDBC) API. JDBC is a standard Java API for
communicating with tabular databases. "' We hopefully will never need to write this code in our
applications, but it eventually gets called by any database mapping layers we may use — therefore
it is good to know some of the foundation.

9.1. JDBC DataSource

The javax.sql.DataSource is the starting point for interacting with the database. Assuming we have
Flyway schema migrations working at startup, we already know we have our database properties
setup properly. It is now our chance to inject a DataSource and do some work.

The following snippet shows an example of an injected DataSource. That DataSource is being used to
obtain the URL used to connect to the database. Most JDBC commands declare a checked exception
(SQLException) that must be caught or also declared thrown.

Injecting a DataSource

public class JdbcSongDAO {
private final javax.sql.DataSource dataSource; @

public void init() {
try {
String url = dataSource.getConnection().getMetaData().getURL();

.. @
} catch (SQLException ex) { ®

throw new I1legalStateException(ex);
}

@ DataSource injected using constructor injection
@ DataSource used to obtain a connection and metadata for the URL

® All/most J]DBC commands declare throwing a SQLException that must be explicitly handled

9.2. Obtain Connection and Statement

We obtain a java.sql.Connection from the DataSource and a Statement from the connection.
Connections and statements must be closed when complete and we can automated that with a Java
try-with-resources statement. PreparedStatement can be used to assemble the statement up front
and reused in a loop if appropriate.

24

public void create(Song song) throws SQLException {
String sql = //insert/select/delete/update ... @

try(Connection conn = dataSource.getConnection(); @
PreparedStatement statement = conn.prepareStatement(sql)) {

//statement.executeUpdate(); ®
//statement.executeQuery();

@ action-specific SQL will be supplied to the PreparedStatement
@ try-with-resources construct automatically closes objects declared at this scope

® Statement used to query and modify database

9.3. JDBC Create Example

JDBC Create Example

public void create(Song song) throws SQLException {
String sql = "insert into REPOSONGS_SONG(id, title, artist, released)
values(?2,?2,2,)"; @D

try(Connection conn = dataSource.getConnection();
PreparedStatement statement = conn.prepareStatement(sql)) {
int id = nextId(conn); //get next ID from database @
log.info("{}, params={}", sql, List.of(id, song.getTitle(), song.getArtist(),
song.getReleased()));

statement.setInt(1, id); ®

statement.setString(2, song.getTitle());
statement.setString(3, song.getArtist());
statement.setDate(4, Date.valueOf(song.getReleased()));
statement.executeUpdate();

setId(song, id); //inject ID into supplied instance @

@ SQL commands have ? placeholders for parameters
@ leveraging a helper method (based on a query statement) to obtain next sequence value
@ filling in the individual variables of the SQL template

@ leveraging a helper method (based on Java reflection) to set the generated ID of the instance
before returning

o Use Variables over String Literal Values

25

Repeated SQL commands should always use parameters over literal values.
Identical SQL templates allow database parsers to recognize a repeated command
and leverage earlier query plans. Unique SQL strings require database to always
parse the command and come up with new plans.

9.4. Set ID Example

The following snippet shows the helper method used earlier to set the ID of an existing instance. We
need the helper because id is declared private. id is declared private and without a setter because it
should never change. Persistence is one of the exceptions to "should never change".

Example Helper Method to Set Private ID of instance

private void setId(Song song, int id) {

try {
Field f = Song.class.getDeclaredField("id"); @

f.setAccessible(true); @
f.set(song, id); ®

} catch (NoSuchFieldException | I1legalAccessException ex) {
throw new IllegalStateException("unable to set Song.id", ex);

}

@ using Java reflection to locate the id field of the Song class

@ must set to accessible since id is private — otherwise an I11legalAccessException

® setting the value of the id field

9.5. JDBC Select Example

The following snippet shows an examle of using a JDBC select. In this case we are querying the
database and representing the returned rows as instances of Song POJOs.

JDBC Select Example

public Song findById(int id) throws SQLException {
String sql = "select title, artist, released from REPOSONGS_SONG where id=?"; @

try(Connection conn = dataSource.getConnection();
PreparedStatement statement = conn.prepareStatement(sql)) {
statement.setInt(1, id); @
try (ResultSet rs = statement.executeQuery()) { ®
if (rs.next()) { @
Date releaseDate = rs.getDate(3); ®
return Song.builder()
.id(id)
.title(rs.getString(1))

.artist(rs.qgetString(2))
.released(releaseDate == null ? null : releaseDate.tolocalDate())

26

.build();

} else {
throw new NoSuchElementException(String.format(“song[%d] not found",

@ provide a SQL template with ? placeholders for runtime variables

@ fill in variable placeholders
® execute query and process results in one or more ResultSet —which must be closed when
complete

@ must test ResultSet before obtaining first and each subsequent row

® obtain values from the ResultSet — numerical order is based on SELECT clause

9.6. nextld

The nextId() call from createSong() is another query on the surface, but it is incrementing a
sequence at the database level to supply the value.

nextld

private int nextId(Connection conn) throws SQLException {
String sql = dialect.getNextvalSql();
try(PreparedStatement call = conn.prepareStatement(sql)) {
try (ResultSet rs = call.executeQuery()) {
if (rs.next()) {
Long id = rs.getlong(1);
return id.intValue();

} else {
throw new IllegalStateException("no sequence result returned from

9.7. Dialect

Sequences syntax (and support for Sequences) is often DB-specific. Therefore, if we are working at
the SQL or JDBC level, we need to use the proper dialect for our target database. The following
snippet shows two choices for dialect for getting the next value for a sequence.

Dialect

private Dialect dialect;

27

enum Dialect {
H2("call next value for hibernate_sequence"),
POSTGRES("select nextval('hibernate_sequence')");
private String nextvalSql;
private Dialect(String nextvalSql) {
this.nextvalSql = nextvalSql;

}
String getNextvalSql() { return nextvalSql; }

[1] "JDBC Tutorial", tutorialspoint.com

28

https://www.tutorialspoint.com/jdbc/index.htm

Chapter 10. Summary

In this module we learned:

* to define a relational database schema for a table, columns, sequence, and index
* to define a primary key, table constraints, and an index

* to automate the creation and migration of the database schema

* to interact with database tables and columns with SQL

* underlying JDBC API interactions

29

	RDBMS
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Schema Concepts
	2.1. RDBMS Tables/Columns
	2.2. Column Data
	2.3. Column Types
	2.4. Example Column Types
	2.5. Constraints
	2.6. Primary Key
	2.7. UUID
	2.8. Database Sequence

	Chapter 3. Example POJO
	Chapter 4. Schema
	4.1. Schema Creation
	4.2. Example Schema

	Chapter 5. Schema Command Line Population
	5.1. Schema Result
	5.2. List Tables
	5.3. Describe Song Table

	Chapter 6. RDBMS Project
	6.1. RDBMS Project Dependencies
	6.2. RDBMS Access Objects
	6.3. RDBMS Connection Properties

	Chapter 7. Schema Migration
	7.1. Flyway Automated Schema Migration
	7.2. Flyway Schema Source
	7.3. Flyway Automatic Schema Population
	7.4. Database Server Profiles
	7.5. Dirty Database Detection
	7.6. Flyway Migration

	Chapter 8. SQL CRUD Commands
	8.1. H2 Console Access
	8.2. Postgres CLI Access
	8.3. Next Value for Sequence
	8.4. SQL ROW INSERT
	8.5. SQL SELECT
	8.6. SQL ROW UPDATE
	8.7. SQL ROW DELETE
	8.8. RDBMS Transaction

	Chapter 9. JDBC
	9.1. JDBC DataSource
	9.2. Obtain Connection and Statement
	9.3. JDBC Create Example
	9.4. Set ID Example
	9.5. JDBC Select Example
	9.6. nextId
	9.7. Dialect

	Chapter 10. Summary

