
Java Persistence API (JPA)
jim stafford

Fall 2022 v2022-07-24: Built: 2022-12-07 06:13 EST

Table of Contents
1. Introduction. 1

1.1. Goals. 1

1.2. Objectives . 1

2. Java Persistence API. 2

2.1. JPA Standard and Providers . 2

2.2. JPA Dependencies . 2

2.3. Enabling JPA AutoConfiguration. 3

2.4. Configuring JPA DataSource. 3

2.5. Automatic Schema Generation . 4

2.6. Schema Generation to File . 4

2.7. Other Useful Properties. 5

2.8. Configuring JPA Entity Scan . 5

2.9. JPA Persistence Unit . 6

2.10. JPA Persistence Context. 6

3. JPA Entity . 8

3.1. JPA @Entity Defaults . 8

3.2. JPA Overrides . 9

4. Basic JPA CRUD Commands . 10

4.1. EntityManager persist() . 10

4.2. EntityManager find() By Identity . 10

4.3. EntityManager query. 11

4.4. EntityManager flush() . 12

4.5. EntityManager remove(). 12

4.6. EntityManager clear() and detach() . 13

5. Transactions . 14

5.1. Transactions Required for Explicit Changes/Actions . 14

5.2. Activating Transactions. 14

5.3. Conceptual Transaction Handling . 15

5.4. Activating Transactions in @Components . 16

5.5. Calling @Transactional @Component Methods . 16

5.6. @Transactional @Component Methods SQL . 17

5.7. Unmanaged @Entity . 17

5.8. Shared Transaction . 18

5.9. @Transactional Attributes . 18

6. Summary . 20

Chapter 1. Introduction
This lecture covers implementing object/relational mapping (ORM) to an RDBMS using the Java
Persistence API (JPA). This lecture will directly build on the previous concepts covered in the
RDBMS and show the productivity power gained by using an ORM to map Java classes to the
database.

1.1. Goals
The student will learn:

• to identify the underlying JPA constructs that are the basis of Spring Data JPA Repositories

• to implement a JPA application with basic CRUD capabilities

• to understand the significance of transactions when interacting with JPA

1.2. Objectives
At the conclusion of this lecture and related exercises, the student will be able to:

1. declare project dependencies required for using JPA

2. define a DataSource to interface with the RDBMS

3. define a PersistenceContext containing an @Entity class

4. inject an EntityManager to perform actions on a PeristenceUnit and database

5. map a simple @Entity class to the database using JPA mapping annotations

6. perform basic database CRUD operations on an @Entity

7. define transaction scopes

1

Chapter 2. Java Persistence API
The Java Persistence API (JPA) is an object/relational mapping (ORM) layer that sits between the
application code and JDBC and is the basis for Spring Data JPA Repositories. JPA permits the
application to primarily interact with plain old Java (POJO) business objects and a few standard
persistence interfaces from JPA to fully manage our objects in the database. JPA works off
convention and customized by annotations primarily on the POJO, called an Entity. JPA offers a rich
set of capability that would take us many chapters and weeks to cover. I will just cover the very
basic setup and @Entity mapping at this point.

2.1. JPA Standard and Providers
The JPA standard was originally part of Java EE, which is now managed by the Eclipse Foundation
within Jakarta. It was released just after Java 5, which was the first version of Java to support
annotations. It replaced the older, heavyweight Entity Bean Standard — that was ill-suited for the
job of realistic O/R mapping — and progressed on a path that was in line with Hibernate. There are
several persistence providers of the API

• EclipseLink is now the reference implementation

• Hibernate was one of the original implementations and the default implementation within
Spring Boot

• OpenJPA from the Apache Software Foundation

• DataNucleus

2.2. JPA Dependencies
Access to JPA requires declaring a dependency on the JPA interface (jakarta.persistence-api) and a
provider implementation (e.g., hibernate-core). This is automatically added to the project by
declaring a dependency on the spring-boot-starter-data-jpa module.

Spring Data JPA Maven Dependency

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

The following shows a subset of the dependencies brought into the application by declaring a
dependency on the JPA starter.

Spring Boot JPA Starter Dependencies

+- org.springframework.boot:spring-boot-starter-data-jpa:jar:2.7.0:compile
| +- org.springframework.boot:spring-boot-starter-aop:jar:2.7.0:compile
| +- org.springframework.boot:spring-boot-starter-jdbc:jar:2.7.0:compile
| | \- org.springframework:spring-jdbc:jar:5.3.20:compile

2

https://projects.eclipse.org/projects/ee4j.jpa
https://projects.eclipse.org/projects/ee4j.jpa
https://en.wikipedia.org/wiki/Jakarta_Persistence#JPA_2.2
https://www.eclipse.org/eclipselink/
https://hibernate.org/orm/
http://openjpa.apache.org/
https://www.datanucleus.org/

| +- jakarta.transaction:jakarta.transaction-api:jar:1.3.3:compile
| +- jakarta.persistence:jakarta.persistence-api:jar:2.2.3:compile ①
| +- org.hibernate:hibernate-core:jar:5.6.9.Final:compile ②

① the JPA API module is required to compile standard JPA constructs

② a JPA provider module is required to access extensions and for runtime implementation of the
standard JPA constructs

From these dependencies we have the ability to define and inject various JPA beans.

2.3. Enabling JPA AutoConfiguration
JPA has its own defined bootstrapping constructs that involve settings in persistence.xml and entity
mappings in orm.xml configuration files. These files define the overall persistence unit and include
information to connect to the database and any custom entity mapping overrides.

Spring Boot JPA automatically configures a default persistence unit and other related beans when
the @EnableJpaRepositories annotation is provided. @EntityScan is used to identify packages for
@Entities to include in the persistence unit.

Spring Boot Data Bootstrapping

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@SpringBootApplication
@EnableJpaRepositories ①
// Class<?>[] basePackageClasses() default {};
// String repositoryImplementationPostfix() default "Impl";
// ...(many more configurations)
@EntityScan ②
// Class<?>[] basePackageClasses() default {};
public class JPASongsApp {

① triggers and configures scanning for JPA Repositories

② triggers and configures scanning for JPA Entities

By default, this configuration will scan packages below the class annotated with the @EntityScan
annotation. We can override that default using the attributes of the @EntityScan annotation.

2.4. Configuring JPA DataSource
Spring Boot provides convenient ways to provide property-based configurations through its
standard property handing, making the connection areas of persistence.xml unnecessary (but still
usable). The following examples show how our definition of the DataSource for the JDBC/SQL
example can be used for JPA as well.

Table 1. Spring Data JPA Database Connection Properties

3

https://thorben-janssen.com/jpa-persistence-xml/
https://thorben-janssen.com/mapping-definitions-jpa-hibernate-annotations-xml/

H2 In-Memory Example Properties

spring.datasource.url=jdbc:h2:mem:songs

Postgres Client Example Properties

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=secret

2.5. Automatic Schema Generation
JPA provides the capability to automatically generate schema from the Persistence Unit definitions.
This can be configured to write to a file to be used to kickstart schema authoring. However, the
most convenient use for schema generation is at runtime during development.

Spring Boot will automatically enable runtime schema generation for in-memory database URLs.
We can also explicitly enable runtime schema generation using the following hibernate property.

Example Explicit Enable Runtime Schema Generation

spring.jpa.hibernate.ddl-auto=create

2.6. Schema Generation to File
The JPA provider can be configured to generate schema to a file. This can be used directly by tools
like Flyway or simply to kickstart manual schema authoring.

The following configuration snippet instructs the JPA provider to generate a create and drop
commands into the same drop_create.sql file based on the metadata discovered within the
PersistenceContext. Hibernate has the additional features to allow for formatting and line
termination specification.

Schema Generation to File Example

spring.jpa.properties.javax.persistence.schema-generation.scripts.action=drop-and-
create
spring.jpa.properties.javax.persistence.schema-generation.create-source=metadata

spring.jpa.properties.javax.persistence.schema-generation.scripts.create-
target=target/generated-sources/ddl/drop_create.sql
spring.jpa.properties.javax.persistence.schema-generation.scripts.drop-
target=target/generated-sources/ddl/drop_create.sql

spring.jpa.properties.hibernate.hbm2ddl.delimiter=; ①
spring.jpa.properties.hibernate.format_sql=true ②

4

① adds ";" character to terminate every command — making it SQL script-ready

② adds new lines to make more human-readable

action can have values of none, create, drop-and-create, and drop [1]

create/drop-source can have values of metadata, script, metadata-then-script, or script-then-
metadata. metadata will come from the class defaults and annotations. script will come from a
location referenced by create/drop-script-source

Generate Schema to Debug Complex Mappings

Generating schema from @Entity class metadata is a good way to debug odd
persistence behavior. Even if normally ignored, the generated schema can identify
incorrect and accidental definitions that may cause unwanted behavior.

2.7. Other Useful Properties
It is useful to see database SQL commands coming from the JPA/Hibernate layer during early stages
of development or learning. The following properties will print the JPA SQL commands and values
that were mapped to the SQL substitution variables.

JPA/Hibernate SQL/JDBC Debug Properties

spring.jpa.show-sql=true ①
logging.level.org.hibernate.type=trace ②

① prints JPA SQL commands

② prints SQL parameter values

The following cleaned up output shows the result of the activated debug. We can see the individual
SQL commands issued to the database as well as the parameter values used in the call and
extracted from the response.

JPA/Hibernate SQL/JDBC Debug Example Output

Hibernate: call next value for hibernate_sequence
Hibernate: insert into reposongs_song (artist, released, title, id) values (?, ?, ?,
?)

binding parameter [1] as [VARCHAR] - [Rage Against The Machine]
binding parameter [2] as [DATE] - [2020-05-12]
binding parameter [3] as [VARCHAR] - [Recalled to Life]
binding parameter [4] as [INTEGER] - [1]

2.8. Configuring JPA Entity Scan
Spring Boot JPA will automatically scan for @Entity classes. We can provide a specification to
external packages to scan using the @EntityScan annotation.

5

The following shows an example of using a String package specification to a root package to scan
for @Entity classes.

@EntityScan example

import org.springframework.boot.autoconfigure.domain.EntityScan;
...
@EntityScan(value={"info.ejava.examples.db.repo.jpa.songs.bo"})

The following example, instead uses a Java class to express a package to scan. We are using a
specific @Entity class in this case, but some may define an interface simply to help mark the
package and use that instead. The advantage of using a Java class/interface is that it will work
better when refactoring.

@EntityScan .class Example

import info.ejava.examples.db.repo.jpa.songs.bo.Song;
...
@EntityScan(basePackageClasses = {Song.class})

2.9. JPA Persistence Unit
The JPA Persistence Unit represents the overall definition of a group of Entities and how we interact
with the database. A defined Persistence Unit can be injected into the application using an
EntityManagerFactory. From this injected class, clients can gain access to metadata and initiate a
Persistence Context.

Persistance Unit/EntityManagerFactory Injection Example

import javax.persistence.EntityManagerFactory;
...
 @Autowired
 private EntityManagerFactory emf;

2.10. JPA Persistence Context
A Persistence Context is a usage instance of a Persistence Unit and is represented by an
EntityManager. An @Entity with the same identity is represented by a single instance within a
Persistence Context.

Persistance Context/EntityManager Injection Example

import javax.persistence.EntityManager;
...
 @Autowired
 private EntityManager em;

6

Injected EntityManagers reference the same Persistence Context when called within the same
thread. That means that a Song loaded by one client with ID=1 will be available to sibling code when
using ID=1.

Use/Inject EntityManagers

Normal application code that creates, gets, updates, and deletes @Entity data
should use an injected EntityManager and allow the transaction management to
occur at a higher level.

[1] "JavaEE: The JavaEE Tutorial, Database Schema Creation", Oracle, JavaEE 7

7

https://docs.oracle.com/javaee/7/tutorial/persistence-intro005.htm

Chapter 3. JPA Entity
A JPA @Entity is a class that is mapped to the database that primarily represents a row in a table.
The following snippet is the example Song class we have already manually mapped to the
REPOSONGS_SONG database table using manually written schema and JDBC/SQL commands in a
previous lecture. To make the class an @Entity, we must:

• annotate the class with @Entity

• provide a no-argument constructor

• identify one or more colums to represent the primary key using the @Id annotation

• override any convention defaults with further annotations

JPA Example Entity

@javax.persistence.Entity ①
@Getter
@AllArgsConstructor
@NoArgsConstructor ②
public class Song {
 @javax.persistence.Id ③ ④
 private int id;
 @Setter
 private String title;
 @Setter
 private String artist;
 @Setter
 private java.time.LocalDate released;
}

① class must be annotated with @Entity

② class must have a no-argument constructor

③ class must have one or more fields designated as the primary key

④ annotations can be on the field or property and the choice for @Id determines the default

Primary Key property is not modifiable

This Java class is not providing a setter for the field mapped to the primary key in
the database. The primary key will be generated by the persistence provider at
runtime and assigned to the field. The field cannot be modified while the instance
is managed by the provider. The all-args constructor can be used to instantiate a
new object with a specific primary key.

3.1. JPA @Entity Defaults
By convention and supplied annotations, the class as shown above would:

• have the entity name "Song" (important when expressing queries; ex. select s from Song s)

8

• be mapped to the SONG table to match the entity name

• have columns id integer, title varchar, artist varchar, and released (date)

• use id as its primary key and manage that using a provider-default mechanism

3.2. JPA Overrides
Many/all of the convention defaults can be customized by further annotations. We commonly need
to:

• supply a table name that matches our intended schema (i.e., select * from REPOSONGS_SONG vs
select * from SONG)

• select which primary key mechanism is appropriate for our use

• supply column names that match our intended schema

• identify which properties are optional, part of the initial INSERT, and UPDATE -able

• supply other parameters useful for schema generation (e.g., String length)

Common JPA Annotation Overrides

@Entity
@Table(name="REPOSONGS_SONG") ①
@NoArgsConstructor
...
public class Song {
 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE) ②
 @Column(name = "ID") ③
 private int id;
 @Column(name="TITLE", length=255, nullable=true, insertable=true, updatable=true
)④
 private String title;
 private String artist;
 private LocalDate released;
}

① overriding the default table name SONG with REPOSONGS_SONG

② overriding the default primary key mechanism with SEQUENCE. The default sequence name is
hibernate-sequence for the Hibernate JPA provider.

③ re-asserting the default convention column name ID for the id field

④ re-asserting many of the default convention column mappings

Schema generation properties not used at runtime

Properties like length and nullable are only used during optional JPA schema
generation and are not used at runtime.

9

Chapter 4. Basic JPA CRUD Commands
JPA provides an API for implementing persistence to the database through manipulation of @Entity
instances and calls to the EntityManager.

4.1. EntityManager persist()
We create a new object in the database by calling persist() on the EntityManager and passing in an
@Entity instance that represents something new. This will:

• assign a primary key if configured to do so

• add the instance to the Persistence Context

• make the @Entity instance managed from that point forward

The following snippet shows a partial DAO implementation using JPA.

Example EntityManager persist() Call

@Component
@RequiredArgsConstructor
public class JpaSongDAO {
 private final EntityManager em;

 public void create(Song song) {
 em.persist(song);
 }
...

A database INSERT SQL command will be queued to the database as a result of a successful call and
the @Entity instance will be in a managed state.

Resulting SQL from persist Call()

Hibernate: call next value for hibernate_sequence
Hibernate: insert into reposongs_song (artist, released, title, id) values (?, ?, ?,
?)

In the managed state, any changes to the @Entity will result in a future UPDATE SQL command.
Updates are issued during the next JPA session "flush". JPA session flushes can be triggered
manually or automatically prior to or no later than the next commit.

4.2. EntityManager find() By Identity
JPA supplies a means to get the full @Entity using its primary key.

10

Example EntityManager find() Call

public Song findById(int id) {
 return em.find(Song.class, id);
}

If the instance is not yet loaded into the Persistence Context, SELECT SQL command(s) will be issued
to the database to obtain the persisted state. The following snippet shows the SQL generated by
Hibernate to fetch the state from the database to realize the @Entity instance within the JVM.

Resulting SQL from find() Call

Hibernate: select
 song0_.id as id1_0_0_,
 song0_.artist as artist2_0_0_,
 song0_.released as released3_0_0_,
 song0_.title as title4_0_0_
from reposongs_song song0_
where song0_.id=?

From that point forward, the state will be returned from the Persistence Context without the need
to get the state from the database.

4.3. EntityManager query
JPA provides many types of queries

• JPA Query Language (JPAQL) - a very SQL-like String syntax expressed in terms of @Entity
classes and relationship constructs

• Criteria Language - a type-safe, Java-centric syntax that avoids String parsing and makes
dynamic query building more efficient than query string concatenation and parsing

• Native SQL - the same SQL we would have provided to JDBC

The following snippet shows an example of executing a JPAQL Query.

Example EntityManager Query

public boolean existsById(int id) {
 return em.createQuery("select count(s) from Song s where s.id=:id",①
 Number.class) ②
 .setParameter("id", id) ③
 .getSingleResult() ④
 .longValue()==1L; ⑤
}

① JPAQL String based on @Entity constructs

② query call syntax allows us to define the expected return type

11

③ query variables can be set by name or position

④ one (mandatory) or many results can be returned from query

⑤ entity exists if row count of rows matching PK is 1. Otherwise should be 0

The following shows how our JPAQL snippet mapped to the raw SQL issued to the database. Notice
that our Song @Entity reference was mapped to the REPOSONGS_SONG database table.

Resulting SQL from Query Call

Hibernate: select
 count(song0_.id) as col_0_0_
from reposongs_song song0_
where song0_.id=?

4.4. EntityManager flush()
Not every change to an @Entity and call to an EntityManager results in an immediate 1:1 call to the
database. Some of these calls manipulate an in-memory cache in the JVM and may get issued in a
group of other commands at some point in the future. We normally want to allow the EntityManager
to cache these calls as much as possible. However, there are times (e.g., prior to making a raw SQL
query) where we want to make sure the database has the current state of the cache.

The following snippet shows an example of flushing the contents of the cache after changing the
state of a managed @Entity instance.

Example EntityManager flush() Call

Song s = ... //obtain a reference to a managed instance
s.setTitle("...");
em.flush(); //optional!!! will eventually happen at some point

Whether is was explicitly issued or triggered internally by the JPA provider, the following snippet
shows the resulting UPDATE SQL call to change the state of the database to match the Persistence
Context.

Resulting SQL from flush() Call

Hibernate: update reposongs_song
 set artist=?, released=?, title=? ①
where id=?

① all fields designated as updatable=true are included in the UPDATE

4.5. EntityManager remove()
JPA provides a means to delete an @Entity from the database. However, we must have the managed
@Entity instance loaded in the Persistence Context first to use this capability. The reason for this is

12

that a JPA delete can optionally involve cascading actions to remove other related entities as well.

The following snippet shows how a managed @Entity instance can be used to initiate the removal
from the database.

Example EntityManager remove() Call

public void delete(Song song) {
 em.remove(song);
}

The following snippet shows how the remove command was mapped to a SQL DELETE command.

Resulting SQL from remove() Call

Hibernate: delete from reposongs_song
where id=?

4.6. EntityManager clear() and detach()
There are two commands that will remove entities from the Persistence Context. They have their
purpose, but know that they are rarely used and can be dangerous to call.

• clear() - will remove all entities

• detach() - will remove a specific @Entity

I only bring these up because you may come across class examples where I am calling flush() and
clear() in the middle of a demonstration. This is purposely mimicking a fresh Persistence Context
within scope of a single transaction.

clear() and detach() Commands

em.clear();
em.detach(song);

Calling clear() or detach() will evict all managed entities or targeted managed @Entity from the
Persistence Context — loosing any in-progress and future modifications. In the case of returning
redacted @Entities — this may be exactly what you want (you don’t want the redactions to remove
data from the database).

Use clear() and detach() with Caution

Calling clear() or detach() will evict all managed entities or targeted managed
@Entity from the Persistence Context — loosing any in-progress and future
modifications.

13

Chapter 5. Transactions
All commands require some type of transaction when interacting with the database. The
transaction can be activated and terminated at varying levels of scope integrating one or more
commands into a single transaction.

5.1. Transactions Required for Explicit
Changes/Actions
The injected EntityManager is the target of our application calls and the transaction gets associated
with that object. The following snippet shows the provider throwing a TransactionRequiredException
when the calling persist() on the injected EntityManager when no transaction has been activated.

Example Persist Failure without Transaction

@Autowired
private EntityManager em;
...
@Test
void transaction_missing() {
 //given - an instance
 Song song = mapper.map(dtoFactory.make());

 //when - persist is called without a tx, an exception is thrown
 em.persist(song); ①
}

① TransactionRequiredException exception thrown

Exception Thrown when Required Transaction Missing

javax.persistence.TransactionRequiredException: No EntityManager with actual
transaction available for current thread - cannot reliably process 'persist' call

5.2. Activating Transactions
Although you will find transaction methods on the EntityManager, these are only meant for
individually managed instances created directly from the EntityManagerFactory. Transactions for
injected an EntityManager are managed by the container and triggered by the presence of a
@Transactional annotation on a called bean method within the call stack.

This next example annotates the calling @Test method with the @Transactional annotation to cause a
transaction to be active for the three (3) contained EntityManager calls.

Example @Transactional Activation

import org.springframework.transaction.annotation.Transactional;

14

...
@Test
@Transactional ①
void transaction_present_in_caller() {
 //given - an instance
 Song song = mapper.map(dtoFactory.make());

 //when - persist called within caller transaction, no exception thrown
 em.persist(song); ②
 em.flush(); //force DB interaction ②

 //then
 then(em.find(Song.class, song.getId())).isNotNull(); ②
} ③

① @Transactional triggers an Aspect to activate a transaction for the Persistence Context operating
within the current thread

② the same transaction is used on all three (3) EntityManager calls

③ the end of the method will trigger the transaction-initiating Aspect to commit (or rollback) the
transaction it activated

5.3. Conceptual Transaction Handling
Logically speaking, the transaction handling done on behalf of @Transactional is similar to the
snippet shown below. However, as complicated as that is — it does not begin to address nested calls.
Also note that a thrown RuntimeException triggers a rollback and anything else triggers a commit.

Conceptual View of Transaction Handling

tx = em.getTransaction();
try {
 tx.begin();
 //call code ②
} catch (RuntimeException ex) {
 tx.setRollbackOnly(); ①
} catch (Exception ex) { ②
} finally {
 if (tx.getRollbackOnly()) {
 tx.rollback();
 } else {
 tx.commit();
 }
}

① RuntimeException, by default, triggers a rollback

② Normal returns and checked exceptions, by default, trigger a commit

15

5.4. Activating Transactions in @Components
We can alternatively push the demarcation of the transaction boundary down to the @Component
methods.

The snippet below shows a DAO @Component that designates each of its methods being
@Transactional. This has the benefit of knowing that each of the calls to EntityManager methods will
have the required transaction in place — whether it is the right one is a later topic.

@Transactional Component

@Component
@RequiredArgsConstructor
@Transactional ①
public class JpaSongDAO {
 private final EntityManager em;

 public void create(Song song) {
 em.persist(song);
 }
 public Song findById(int id) {
 return em.find(Song.class, id);
 }
 public void delete(Song song) {
 em.remove(song);
 }

① each method will be assigned a transaction

5.5. Calling @Transactional @Component Methods
The following example shows the calling code invoking methods of the DAO @Component in
independent transactions. The code works because there really is no dependency between the
INSERT and SELECT to be part of the same transaction, as long as the INSERT commits before the SELECT
transaction starts.

Calling @Component @Transactional Methods

@Test
void transaction_present_in_component() {
 //given - an instance
 Song song = mapper.map(dtoFactory.make());

 //when - persist called within component transaction, no exception thrown
 jpaDao.create(song); ①

 //then
 then(jpaDao.findById(song.getId())).isNotNull(); ②
}

16

① INSERT is completed in separate transaction

② SELECT completes in follow-on transaction

5.6. @Transactional @Component Methods SQL
The following shows the SQL triggered by the snippet above with the different transactions
annotated.

@Transactional Methods Resulting SQL

①
Hibernate: insert into reposongs_song (artist, released, title, id) values (?, ?, ?,
?)
②
Hibernate: select
 song0_.id as id1_0_0_,
 song0_.artist as artist2_0_0_,
 song0_.released as released3_0_0_,
 song0_.title as title4_0_0_
from reposongs_song song0_
where song0_.id=?

① transaction 1

② transaction 2

5.7. Unmanaged @Entity
However, we do not always get that lucky — for individual, sequential transactions to play well
together. JPA entities follow the notation of managed and unmanaged/detached state.

• Managed entities are actively being tracked by a Persistence Context

• Unmanaged/Detached entities have either never been or no longer associated with a Persistence
Context

The following snippet shows an example of where a follow-on method fails because the
EntityManager requires that @Entity be currently managed. However, the end of the create()
transaction made it detached.

Unmanaged @Entity

@Test
void transaction_common_needed() {
 //given a persisted instance
 Song song = mapper.map(dtoFactory.make());
 jpaDao.create(song); //song is detached at this point ①

 //when - removing detached entity we get an exception

17

 jpaDao.delete(song); ②

① the first transaction starts and ends at this call

② the EntityManager.remove operates in a separate transaction with a detached @Entity from the
previous transaction

The following text shows the error message thrown by the EntityManager.remove call when a
detached entity is passed in to be deleted.

java.lang.IllegalArgumentException: Removing a detached instance
info.ejava.examples.db.repo.jpa.songs.bo.Song#1

5.8. Shared Transaction
We can get things to work better if we encapsulate methods behind a @Service method defining
good transaction boundaries. Lacking a more robust application, the snippet below adds the
@Transactional to the @Test method to have it shared by the three (3) DAO @Component calls — making
the @Transactional annotations on the DAO meaningless.

Shared Transaction

@Test
@Transactional ①
void transaction_common_present() {
 //given a persisted instance
 Song song = mapper.map(dtoFactory.make());
 jpaDao.create(song); //song is detached at this point ②

 //when - removing managed entity, it works
 jpaDao.delete(song); ②

 //then
 then(jpaDao.findById(song.getId())).isNull(); ②
}

① @Transactional at the calling method level is shared across all lower-level calls

② Each DAO call is executed in the same transaction and the @Entity can still be managed across all
calls

5.9. @Transactional Attributes
There are several attributes that can be set on the @Transactional annotation. A few of the more
common properties to set include

• propagation - defaults to REQUIRED, proactively activating a transaction if not already present

◦ SUPPORTS - lazily initiates a transaction, but fully supported if already active

18

◦ MANDATORY - error if called without an active transaction

◦ REQUIRES_NEW - proactively creates a new transaction separate from the caller’s
transaction

◦ NOT_SUPPORTED - nothing within the called method will honor transaction semantics

◦ NEVER - do not call with an active transaction

◦ NESTED - may not be supported, but permits nested transactions to complete before
returning to calling transaction

• isolation - location to assign JDBC Connection isolation

• readOnly - defaults to false, hints to JPA provider that entities can be immediately detached

• rollback definitions - when to implement non-standard rollback rules

19

Chapter 6. Summary
In this module we learned:

• to configure a JPA project in include project dependencies and required application properties

• to define a PersistenceContext and where to scan for @Entity classes

• requirements for an @Entity class

• default mapping conventions for @Entity mappings

• optional mapping annotations for @Entity mappings

• to perform basic CRUD operations with the database

20

	Java Persistence API (JPA)
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Java Persistence API
	2.1. JPA Standard and Providers
	2.2. JPA Dependencies
	2.3. Enabling JPA AutoConfiguration
	2.4. Configuring JPA DataSource
	2.5. Automatic Schema Generation
	2.6. Schema Generation to File
	2.7. Other Useful Properties
	2.8. Configuring JPA Entity Scan
	2.9. JPA Persistence Unit
	2.10. JPA Persistence Context

	Chapter 3. JPA Entity
	3.1. JPA @Entity Defaults
	3.2. JPA Overrides

	Chapter 4. Basic JPA CRUD Commands
	4.1. EntityManager persist()
	4.2. EntityManager find() By Identity
	4.3. EntityManager query
	4.4. EntityManager flush()
	4.5. EntityManager remove()
	4.6. EntityManager clear() and detach()

	Chapter 5. Transactions
	5.1. Transactions Required for Explicit Changes/Actions
	5.2. Activating Transactions
	5.3. Conceptual Transaction Handling
	5.4. Activating Transactions in @Components
	5.5. Calling @Transactional @Component Methods
	5.6. @Transactional @Component Methods SQL
	5.7. Unmanaged @Entity
	5.8. Shared Transaction
	5.9. @Transactional Attributes

	Chapter 6. Summary

