Integration Unit Testing

jim stafford

Fall 2022 v2020-08-11: Built: 2022-12-07 06:19 EST



Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Votes and Elections Service
2.1. Main Application Flows
2.2. Service Event Integration
3. Physical Architecture
3.1. Integration Unit Test Physical Architecture
4. Mongo Integration
4.1. MongoDB Maven Dependencies
4.2. Test MongoDB Maven Dependency
4.3. MongoDB Properties
4.4. MongoDB Repository
4.5. VoteDTO MongoDB Document Class
4.6. Sample MongoDB/VoterRepository Calls
5. ActiveMQ Integration
5.1. ActiveMQ Maven Dependencies
5.2. ActiveMQ Integration Unit Test Properties
5.3. Service Joinpoint Advice
5.4. JMS Publish
5.5. ObjectMapper
5.6. JMS Receive
5.7. EventListener
6. JPA Integration
6.1. JPA Core Maven Dependencies
6.2. JPA Test Dependencies
6.3. JPA Properties
6.4. Database Schema Migration
6.5. Flyway RDBMS Schema Migration
6.6. Flyway RDBMS Schema Migration Files
6.7. Flyway RDBMS Schema Migration Output
6.8. JPA Repository
6.9. Example VoteBO Entity Class
6.10. Sample JPA/ElectionRepository Calls
7. Unit Integration Test
7.1. ClientTestConfiguration
7.2. Example Test

8. Summary

© 00 00 00 N 9 NN U U1 W W W NN e

NN NN N R B R R oR R |l |l |l Rl | |l |l Rl | )
BW NN O O O O 0o oo o R R W NDN R R



Chapter 1. Introduction

In the testing lectures I made a specific point to separate the testing concepts of

* focusing on a single class with stubs and mocks
* integrating multiple classes through a Spring context

* having to manage separate processes using the Maven integration test phases and plugins

Having only a single class under test meets most definitions of "unit testing". Having to manage
multiple processes satisfies most definitions of "integration testing". Having to integrate multiple
classes within a single JVM using a single JUnit test is a bit of a middle ground because it takes less
heroics (thanks to modern test frameworks) and can be moderately fast.

I have termed the middle ground "integration unit testing" in an earlier lecture and labeled them
with the suffix "NTest" to signify that they should run within the surefire unit test Maven phase and
will take more time than a mocked unit test. In this lecture, I am going to expand the scope of
"integration unit test" to include simulated resources like databases and JMS servers. This will allow
us to write tests that are moderately efficient but more fully test layers of classes and their
underlying resources within the context of a thread that is more representative of an end-to-end
usecase.

Given an application like the following with databases and a JMS server...

* how can we test application
interaction with a real instance of
r o
; Client the database?
|

Voter
|

: | * how can we test the integration
¥ casts vote v checks results

| | between two processes
\L api \L 5 communicating with JMS events?
ol T R * how can we test timing aspects
i between disparate user and
application events?
» save A savefquery

e how can we test a measured
amount of end-to-end tests with
the scope of our unit integration
tests?

MongoDB

Y newwvote | 4 newwvote

" ActiveMQ
votes : Topic

Figure 1. Votes Application



1.1. Goals

You will learn:

how to integrate MongoDB into a Spring Boot application
* how to integrate a Relational Database into a Spring Boot application
* how to integrate a JMS server into a Spring Boot application

* how to implement an integration unit test using embedded resources

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1. embed a simulated MongoDB within a JUnit test using Flapdoodle
2. embed an in-memory JMS server within a JUnit test using ActiveMQ
3. embed a relational database within a JUnit test using H2

4. verify an end-to-end test case using a unit integration test



Chapter 2. Votes and Elections Service

For this example, I have created two moderately parallel services— Votes and Elections— that
follow a straight forward controller, service, repository, and database layering.

2.1. Main Application Flows

Table 1. Service Controller/Database Dependencies

VoteDTO The Votes Service accepts a
(id : String) J sid and date internally generated
(date : Instant) [===; *source and choice are not vote (VoteDTO) from a caller
| source : String T validated or normalized . .
_ -~ 7 |choice : String and stores that directly in a
-7 4 R
- 7 T database (MongoDB).
VotesController | VoterServ/ice Vote\rRepository o DB
Japifvotes castVote(vote : VoteDTO) : VoteDTO insertivote : VoteDTO)
Figure 2. VotesService
CEBEET HEEED The Elections service
id : String id : String .
date : Instant date : Date transforms received votes
source : Strlng source : Strlng
choice : String - 7 choice : String (VOtEDTO) into database
K -7 K N
I e I "~ entity instances (VoteBO)
! ES - ! - ~ .
EEE R e ElectionsService ElectionRepository e m and stores them 1n a
; - new\Vote(vote : VoteDTO) : void —> savelvote ; voteBO) 4)/.
(R e U _ | getvoteCounts() ; ElectionResultsDTO countvotes() : List<Object(]> | — separate database (POSth‘es)
e Pl using Java Persistence API
T T (JPA). The service uses that
date | Instant persisted information to
y provide election results
VoteCounthTo from aggregated queries of
hoice : Stri
il the database.

Figure 3. ElectionsService

The fact that the applications use MongoDB, Postgres Relational DB, and JPA will only be a very
small part of the lecture material. However, it will serve as a basic template of how to integrate
these resources for much more complicated unit integration tests and deployment scenarios.

2.2. Service Event Integration

The two services are integrated through a set of Aspects, ApplicationEvent, and JMS logic that allow
the two services to be decoupled from one another.

Table 2. Async Dependencies



VoterService
castWote(vote : VoteDTO) : VoteDTO

I .
| B
"
| g
| 5

Y \
Aspect Advice B. K

\
\
!
i

' A |

i VoteDTO

id : String

-~ — > date : Instant
source : String
choice : String

JMSPublisher

Figure 4. Votes Service

VoteDTO
id : String
date : Instant < —

source : String v
choice ; String A

JMSListener

\ L VoteBO
ElectionsService > id : string
new\ote(vote : VoteDTO) : void date : Date
source : String

chaoice ; 5tring

Figure 5. Elections Service

The Votes Service events layer defines a pointcut
on the successful  return of the
VotesService.castVote() and publishes the
resulting vote (VoteDTO) — with newly assigned
ID and date —to a JMS destination.

The Elections Service eventing layer subscribes
to the votes destination and issues an internal
NewVote POJO ApplicationEvent—which is
relayed to the ElectionsService for mapping to
an entity class (VoteBO) and storage in the DB
for later query.

The fact that the applications use JMS will only be a small part of the lecture material. However, it
too will serve as a basic template of how to integrate another very pertinent resource for
distributed systems.



Chapter 3. Physical Architecture

I described five (5) functional services in the previous section: Votes, Elections, MongoDB, Postgres,

and ActiveMQ (for JMS).

X

Voter
|
|
:Y casts vote

1

Clilent

:Y checks results
L

api

! s}

I will eventually mapped them to four (4)
physical nodes: api, mongo, postgres, and
activemq. Both Votes and Elections have been
co-located in the same Spring Boot application
because the Internet deployment platform may

1
|
14

v

‘ Japifvotes

Japifelections

\

|

» save

A save/query

not have a JMS server available for our use.

—_— - - -

Poﬁres

"

MongoDB
VoteDTO
_

1 newvote | 4 newwvote

 ActiveMQ
| wotes : Topic

Figure 6. Physical Architecture

3.1. Integration Unit Test Physical Architecture

For integration unit tests, we will use a single JUnit JVM with the Spring Boot Services and the three
resources embedded using the following options:

JUnit VM B * Flapdoodle - an open source
—— initiative that markets itself to
—>{ /apifvoting implementing an embedded

e fapifelections
NTest MongoDB. It is incorrect to call the
entirety of Flapdoodle

el .

"embedded". The management of

TP - ./ﬁ;gfg;ﬂ°g [ MongoDB is "embedded" but a real
(in-memory managed MongoDB) h2 database

server image is being downloaded
and executed behind the scenes.

Figure 7. Integration Unit Testing Physical Architecture
o another choice is fongo.

Neither are truly embedded
and neither had much activity
in the past 2 years, but
flapdoodle has twice as many
stars on github and has been
active more recently (as of Aug
2020).


https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/fakemongo/fongo

* H2 Database in memory RDBMS we used for user management during the later security topics

* ActiveMQ (Classic) used in embedded mode


https://www.h2database.com/html/main.html
https://activemq.apache.org/

Chapter 4. Mongo Integration

In this section we will go through the steps of adding the necessary MongoDB dependencies to
implement a MongoDB repository and simulate that with an in-memory DB during unit integration
testing.

4.1. MongoDB Maven Dependencies

As with most starting points with Spring Boot —we can bootstrap our application to implement a
MongoDB repository by forming an dependency on spring-boot-starter-data-mongodb.

Primary MongoDB Maven Dependency

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>

That brings in a few driver dependencies that will also activate the MongoAutoConfiguration to
establish a default MongoClient from properties.

MongoDB Starter Dependencies

[INFO] +- org.springframework.boot:spring-boot-starter-data-
mongodb:jar:2.3.2.RELEASE:compile

[INFO] | +- org.mongodb:mongodb-driver-sync:jar:4.0.5:compile

[INFO] | | +- org.mongodb:bson:jar:4.0.5:compile

[INFO] | | \- org.mongodb:mongodb-driver-core:jar:4.0.5:compile

[INFO] | \- org.springframework.data:spring-data-mongodb:jar:3.0.2.RELEASE:compile

4.2. Test MongoDB Maven Dependency

For testing, we add a dependency on de.flapdoodle.embed.mongo. By setting scope to test, we avoid
deploying that with our application outside of our module testing.

Test MongoDB Maven Dependency

<dependency>
<groupld>de.flapdoodle.embed</groupId>
<artifactId>de.flapdoodle.embed.mongo</artifactId>
<scope>test</scope>

</dependency>

The flapdoodle dependency brings in the following artifacts.



Flapdoodle Dependencies

[INFO] +- de.flapdoodle.embed:de.flapdoodle.embed.mongo:jar:2.2.0:test
[INFO] | \- de.flapdoodle.embed:de.flapdoodle.embed.process:jar:2.1.2:test

[INFO] | +- org.apache.commons:commons-lang3:jar:3.10:compile
[INFO] | +- net.java.dev.jna:jna:jar:4.0.0:test

[INFO] | +- net.java.dev.jna:jna-platform:jar:4.0.0:test
[INFO] | \- org.apache.commons:commons-compress:jar:1.18:test

4.3. MongoDB Properties

The following lists a core set of MongoDB properties we will use no matter whether we are in test
or production. If we implement the most common scenario of a single single database — things get
pretty easy to work through properties. Otherwise we would have to provide our own MongoClient
@Bean factories to target specific instances

Core MongoDB Properties

#fmongo
spring.data.mongodb.authentication-database=admin @
spring.data.mongodb.database=votes_db @

@ identifies the mongo database with user credentials

@ identifies the mongo database for our document collections

4.4. MongoDB Repository

Spring Data provides a very nice repository layer that can handle basic CRUD and query
capabilities with a simple interface definition that extends MongoRepository<T,ID>. The following
shows an example declaration for a VoteDT0 POJO class that uses a String for a primary key value.

MongoDB VoterRepository Declaration

import info.ejava.examples.svc.docker.votes.dto.VoteDTO;
import org.springframework.data.mongodb.repository.MongoRepository;

public interface VoterRepository extends MongoRepository<VoteDTO, String> {
}

4.5. VoteDTO MongoDB Document Class

The following shows the MongoDB document class that doubles as a Data Transfer Object (DTO) in
the controller and JMS messages.

Example VoteDTO MongoDB Document Class

import lombok.*;



import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import java.time.Instant;

("votes") @

public class VoteDTO {

private String id; @
private Instant date;
private String source;
private String choice;

@ MongoDB Document class mapped to the votes collection

@ VoteDTO.id property mapped to _id field of MongoDB collection

Example Stored VoteDTO Document

{
"_id":{"$0id":"5f3204056ac44446600b57ff"},

"date":{"$date":{"$numberLong":"1597113349837"}},

m,mzs

"source":"jim",
"choice":"quisp",

_class":"info.ejava.examples.svc.docker.votes.dto.VoteDTO"

}

4.6. Sample MongoDB/VoterRepository Calls

The following snippet shows the injection of the repository into the service class and two sample
calls. At this point in time, it is only important to notice that our simple repository definition gives

us the ability to insert and count documents (and more!!!).

Sample MongoDB/VoterRepository Calls

@
public class VoterServiceImpl implements VoterService {
private final VoterRepository voterRepository; @

public VoteDTO castVote(VoteDTO newVote) {
newVote.setId(null);
newVote.setDate(Instant.now());
return voterRepository.insert(newVote); @



public long getTotalVotes() {
return voterRepository.count(); @

@ using constructor injection to initialize service with repository

@ repository inherits ability to insert new documents

® repository inherits ability to get count of documents

This service is then injected into the controller and accessed through the /api/votes URI. At this

point we are ready to start looking at the details of how to report the new votes to the
ElectionsService.

10



Chapter 5. ActiveMQ Integration

In this section we will go through the steps of adding the necessary ActiveMQ dependencies to
implement a JMS publish/subscribe and simulate that with an in-memory JMS server during unit

integration testing.

5.1. ActiveM(Q Maven Dependencies

The following lists the dependencies we need to implement the Aspects and JMS capability within
the application.

ActiveMQ Primary Maven Dependency

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-activemg</artifactId>
</dependency>

The ActiveMQ starter brings in the following dependencies and actives the
ActiveMQAutoConfiguration class that will setup a JMS connection based on properties.

ActiveMQ Starter Dependencies

[INFO] +- org.springframework.boot:spring-boot-starter-
activemq:jar:2.3.2.RELEASE:compile

[INFO] | +- org.springframework:spring-jms:jar:5.2.8.RELEASE:compile

[INFO] | | +- org.springframework:spring-messaging:jar:5.2.8.RELEASE:compile
[INFO] | | \- org.springframework:spring-tx:jar:5.2.8.RELEASE:compile

5.2. ActiveMQ Integration Unit Test Properties

The following lists the core property required by ActiveMQ in all environments. Without the pub-
sub-domain property defined, ActiveMQ defaults to a queue model —which will not allow our
integration tests to observe the traffic flow if we care to.

ActiveMQ Core Properties

#activemq
spring.jms.pub-sub-domain=true @

@ tells ActiveMQ to use topics versus queues

The following lists the properties that are unique to the local integration unit tests.

11



ActiveMQ Test Properties

#activemq
spring.activemq.in-memory=true @
spring.activemg.pool.enabled=false

@ activemq will establish in-memory destinations

5.3. Service Joinpoint Advice

I used Aspects to keep the Votes Service flow clean of external integration and performed that by
enabling Aspects using the @EnableAspect]AutoProxy annotation and defining the following @Aspect

class, joinpoint, and advice.

Example Service Joinpoint Advice

public class VoterAspects {
private final VoterJMS votePublisher;

("within(info.ejava.examples.svc.docker.votes.services.VoterService+)")
public void voterService(){} @

("execution(*..VoteDTO castVote(..))")
public void castVote(){} @

(value = "voterService() && castVote()", returning = "vote")
public void afterVoteCast(VoteDTO vote) { ®

try {
votePublisher.publish(vote);

} catch (IOException ex) {

}

® matches all calls implementing the VoterService interface
@ matches all calls called castVote that return a VoteDTO

® injects returned VoteDTO from matching calls and calls publish to report event

5.4. JMS Publish

The publishing of the new vote event using JMS is done within the VoterJMS class using an injected
jmsTemplate and ObjectMapper. Essentially, the method marshals the VoteDTO object into a JSON text

string and publishes that in a TextMessage to the "votes" topic.

12



JMS Publisher Code

public class VoterIMS {
private final JmsTemplate jmsTemplate; @
private final ObjectMapper mapper; @

public void publish(VoteDTO vote) throws JsonProcessingException {
final String json = mapper.writeValueAsString(vote); ®

jmsTemplate.send("votes", new MessageCreator() { @

public Message createMessage(Session session) throws JMSException {
return session.createTextMessage(json); ®

}
b

@ inject a jmsTemplate supplied by ActiveMQ starter dependency
@ inject ObjectMapper that will marshal objects to JSON

® marshal vote to JSON string

@ publish the JMS message to the "votes" topic

® publish vote JSON string using a JMS TextMessage

5.5. ObjectMapper

The ObjectMapper that was injected in the VoterJMS class was built using a custom factory that
configured it to use formatting and write timestamps in ISO format versus binary values.

ObjectMapper Factory

public Jackson20bjectMapperBuilder jacksonBuilder() {
Jackson20bjectMapperBuilder builder = new Jackson20bjectMapperBuilder()
.indentOutput(true)
.featuresToDisable(SerializationFeature.WRITE DATES_AS_TIMESTAMPS);
return builder;

public ObjectMapper jsonMapper(Jackson20bjectMapperBuilder builder) {
return builder.createXmlMapper(false).build();

}

13



5.6. JMS Receive

The JMS receive capability is performed within the same VoterJMS class to keep JMS implementation
encapsulated. The class implements a method accepting a JMS TextMessage annotated with
@JmsListener. At this point we could have directly called the ElectionsService but I chose to go

another level of indirection and simply issue an ApplicationEvent.

JMS Receive Code

public class VoterIMS {

private final ApplicationEventPublisher eventPublisher;
private final ObjectMapper mapper;

(destination = "votes") @
public void receive(TextMessage message) throws JMSException { @
String json = message.getText();

try {
VoteDTO vote = mapper.readValue(json, VoteDTO.class); @

eventPublisher.publishEvent(new NewVoteEvent(vote)); @
} catch (JsonProcessingException ex) {

//...
}

@ implements a method receiving a JMS TextMessage
@ method annotated with @ImsListener against the votes topic
® JSON string unmarshaled into a VoteDTO0 instance

@ Simple NewVote POJO event created and issued internal

5.7. EventListener

An Eventlistener @Component is supplied to listen for the application event and relay that to the

ElectionsService.

Example Application Event Listener

import org.springframework.context.event.EventListener;

public class ElectionListener {
private final ElectionsService electionService;

@

14



public void newVote(NewVoteEvent newVoteEvent) { @
electionService.addVote(newVoteEvent.getVote()); @
}

@ method accepts NewVoteEvent POJO
@ method annotated with @EventListener looking for application events

® method invokes addVote of ElectionsService when NewVoteEvent occurs

At this point we are ready to look at some of the implementation details of the Elections Service.

15



Chapter 6. JPA Integration

In this section we will go through the steps of adding the necessary dependencies to implement a
JPA repository and simulate that with an in-memory RDBMS during unit integration testing.

6.1. JPA Core Maven Dependencies

The Elections Service uses a relational database and interfaces with that using Spring Data and Java
Persistence API (JPA). To do that, we need the following core dependencies defined. The starter sets
up the default J]DBC DataSource and JPA layer. The postgresql dependency provides a client for
Postgres and one that takes responsibility for Postgres-formatted JDBC URLs.

RDBMS Core Dependencies

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>
<groupld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>

</dependency>

There are too many (~20) dependencies to list that come in from the spring-boot-starter-data-jpa
dependency. You can run mvn dependency:tree yourself to look, but basically it brings in Hibernate
and connection pooling. The supporting libraries for Hibernate and JPA are quite substantial.

6.2. JPA Test Dependencies

During integration unit testing we add the H2 database dependency to provide another option.

JPA Test Dependencies

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>test</scope>

</dependency>

6.3. JPA Properties

The test properties include a direct reference to the in-memory H2 JDBC URL. I will explain the use
of Flyway next, but this is considered optional for this case because Spring Data will trigger auto-
schema population for in-memory databases.

16



JPA Test Properties

#rdbms
spring.datasource.url=jdbc:h2:mem:users @
spring.jpa.show-sql=true @

# optional: in-memory DB will automatically get schema generated
spring.flyway.enabled=true @

@ JDBC in-memory H2 URL
@ show SQL so we can see what is occurring between service and database

® optionally turn on Flyway migrations

6.4. Database Schema Migration

Unlike the NoSQL MongoDB, relational databases have a strict schema that defines how data is
stored. That must be accounted for in all environments. However — the way we do it can vary:

* Auto-Generation - the simplest way to configure a development environment is to use
JPA/Hibernate auto-generation. This will delegate the job of populating the schema to Hibernate
at startup. This is perfect for dynamic development stages where schema is changing constantly.
This is unacceptable for production and other environments where we cannot loose all of our
data when we restart our application.

* Manual Schema Manipulation - relational database schema can get more complex than what
can get auto-generated and event auto-generated schema normally passes through the review of
human eyes before making it to production. Deployment can be a manually intensive and likely
the choice of many production environments where database admins must review, approve,
and possibly execute the changes.

Once our schema stabilizes, we can capture the changes to a versioned file and use the Flyway
plugin to automate the population of schema. If we do this during integration unit testing, we get a
chance to supply a more tested product for production deployment.

6.5. Flyway RDBMS Schema Migration

Flyway is a schema migration library that can do forward (free) and reverse (at a cost) RDBMS
schema migrations. We include Flyway by adding the following dependency to the application.

Flyway Maven Dependency

<dependency>
<groupIld>org.flywaydb</groupld>
<artifactId>flyway-core</artifactId>
<scope>runtime</scope>

</dependency>

The Flyway test properties include the JDBC URL that we are using for the application and a flag to

17



enable.

Flyway Test Properties

spring.datasource.url=jdbc:h2:mem:users @
spring.flyway.enabled=true

@ Flyway makes use of the Spring Boot database URL

6.6. Flyway RDBMS Schema Migration Files

We feed the Flyway plugin schema migrations that move the database from version N to version
N+1, etc. The default directory for the migrations is in db/migration of the classpath. The directory is
populated with files that are executed in order according to a name syntax that defaults to
Vi#_#_#__description (double underscore between last digit of version and first character of
description; the number of digits in the version is not mandatory)

Flyway Migration File Structure

dockercompose-votes-sve/src/main/resources/
‘-~ db
‘-- migration
|-- V1.0.0__initial_schema.sql
‘-~ V1.0.1__expanding_choice_column.sql

The following is an example of a starting schema (V1_0_0).

Create Table/Index Example Migration #1

create table vote (

id varchar(50) not null,

choice varchar(40),

date timestamp,

source varchar(40),

constraint vote_pkey primary key(id)

)

comment on table vote is 'countable votes for election';

The following is an example of a follow-on migration after it was determined that the original
choice column size was too small.

Expand Table Column Size Example Migration #2

alter table vote alter column choice type varchar(60);

18



6.7. Flyway RDBMS Schema Migration Output

The following is an example Flyway migration occurring during startup.

Example Flyway Schema Migration Output

Database: jdbc:h2:mem:users (H2 1.4)

Successfully validated 2 migrations (execution time 00:00.022s)

Creating Schema History table "PUBLIC"."flyway_schema_history" ...

Current version of schema "PUBLIC": << Empty Schema >>

Migrating schema "PUBLIC" to version 1.0.0 - initial schema

Migrating schema "PUBLIC" to version 1.0.1 - expanding choice column
Successfully applied 2 migrations to schema "PUBLIC" (execution time 00:00.069s)

For our integration unit test—we end up at the same place as auto-generation, except we are
taking the opportunity to dry-run and regression test the schema migrations prior to them reaching
production.

6.8. JPA Repository

The following shows an example of our JPA/ElectionRepository. Similar to the MongoDB
repository — this extension will provide us with many core CRUD and query methods. However, the
one aggregate query targeted for this database cannot be automatically supplied without some
help. We must provide the JPA Query that translates into SQL query to return the choice, vote count,
and latest vote data for that choice.

JPA/ElectionRepository

import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;

public interface ElectionRepository extends JpaRepository<VoteBO, String> {
("select choice, count(id), max(date) from VoteBO group by choice order by
count(id) DESC") @
public List<Object[]> countVotes(); @
}

@ JPA query language to return choices aggregated with vote count and latest vote for each choice

@ a list of arrays — one per result row — with raw DB types is returned to caller

6.9. Example VoteBO Entity Class

The following shows the example JPA Entity class used by the repository and service. This is a
standard JPA definition that defines a table override, primary key, and mapping aspects for each
property in the class.

19



Example VoteBO Entity Class

import javax.persistence.*;

@
(name="VOTE") @

public class VoteBO {
®

(length = 50) @

private String 1id;
(TemporalType.TIMESTAMP)

private Date date;

(length = 40)
private String source;

(length = 40)
private String choice;

@ @Entity annotation required by JPA
@ overriding default table name (VOTEBO)

® JPA requires valid Entity classes to have primary key marked by @Id

@ column size specifications only used when generating schema— otherwise depends on

migration to match

6.10. Sample JPA/ElectionRepository Calls

The following is an example service class that is injected with the ElectionRepository and is able to
make a few sample calls. save() is pretty straight forward but notice that countVotes() requires
some extra processing. The repository method returns a list of Object[] values populated with raw
values from the database —representing choice, voteCount, and lastDate. The newest lastDate is
used as the date of the election results. The other two values are stored within a VoteCountDTO object

within ElectionResultsDTO.

Elections Service Class

public class ElectionsServiceImpl implements ElectionsService {
private final ElectionRepository votesRepository;

(value = Transactional.TxType.REQUIRED)
public void addVote(VoteDTO voteDTO) {

20



VoteBO vote = map(voteDT0);
votesRepository.save(vote); @

public ElectionResultsDTO getVoteCounts() {
List<Object[]> counts = votesRepository.countVotes(); @

ElectionResultsDTO electionResults = new ElectionResultsDTO();

//...
return electionResults;

@ save() inserts a new row into the database

@ countVotes() returns a list of Object[] with raw values from the DB

21



Chapter 7. Unit Integration Test

Stepping outside of the application and looking at the actual unit integration test—we see the
majority of the magical meat in the first several lines.

* @SpringBootTest is used to define an application context that includes our complete application
plus a test configuration that is used to inject necessary test objects that could be configured

differently for certain types of tests (e.g., security filter)

* The port number is randomly generated and injected into the constructor to form baseUrls. We
will look at a different technique in the Testcontainers lecture that allows for more first-class

support for late-binding properties.
Example Integration Unit Test

( classes = {ClientTestConfiqguration.class, VotesExampleApp.class},
webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT, @
properties = "test=true") @
("test") ®
("votes integration unit test")
public class VotesTemplateNTest {
@

private RestTemplate restTemplate;
private final URI baseVotesUrl;
private final URI baseElectionsUrl;

public VotesTemplateNTest( int port) @
throws URISyntaxException {
baseVotesUrl = new URI( ®
String.format("http://localhost:%d/api/votes", port));

baseElectionsUrl = new URI(
String.format("http://localhost:%d/api/elections", port));

@ configuring a local web environment with the random port# injected into constructor
@ adding a test=true property that can be used to turn off conditional logic during tests
® activating the test profile and its associated application-test.properties

@ restTemplate injected for cases where we may need authentication or other filters added

® constructor forming reusable baseUrls with supplied random port value

7.1. ClientTestConfiguration

The following shows how the restTemplate was formed. In this case —it is extremely simple.
However, as you have seen in other cases, we could have required some authentication and logging

filters to the instance and this is the best place to do that when required.

22



ClientTestConfiguration

O
//needed to setup logging
public class ClientTestConfiguration {

public RestTemplate anonymousUser(RestTemplateBuilder builder) {
RestTemplate restTemplate = builder.build();
return restTemplate;

7.2. Example Test

The following shows a very basic example of an end-to-end test of the Votes Service. We use the
baseUrl to cast a vote and then verify that is was accurately recorded.

Example test

public void cast_vote() {
//given - a vote to cast
Instant before = Instant.now();
URI url = baseVotesUrl;
VoteDTO voteCast = create_vote("voter1","quisp");
RequestEntity<VoteDT0> request = RequestEntity.post(url).body(voteCast);

//when - vote is casted
ResponseEntity<VoteDT0> response = restTemplate.exchange(request, VoteDTO0.class);

//then - vote is created
then(response.getStatusCode()).isEqualTo(HttpStatus.CREATED);
VoteDTO recordedVote = response.getBody();
then(recordedVote.getId()).isNotEmpty();
then(recordedVote.getDate()).isAfterOrEqualTo(before);
then(recordedVote.getSource()).isEqualTo(voteCast.getSource());
then(recordedVote.getChoice()).isEqualTo(voteCast.getChoice());

At this point in the lecture we have completed covering the important aspects of forming an
integration unit test with embedded resources in order to implement end-to-end testing on a small
scale.

23



Chapter 8. Summary

At this point we should have a good handle on how to add external resources (e.g., MongoDB,
Postgres, ActiveMQ) to our application and configure our integration unit tests to operate end-to-
end using either simulated or in-memory options for the real resource. This gives us the ability to
identify more issues early before we go into more manually intensive integration or production. In
this following lectures—I will be expanding on this topic to take on several Docker-based
approaches to integration testing.

In this module we learned:

* how to integrate MongoDB into a Spring Boot application
- and how to integration unit test MongoDB code using Flapdoodle
* how to integrate a ActiveMQ server into a Spring Boot application
o and how to integration unit test JMS code using an embedded ActiveMQ server
* how to integrate a Postgres into a Spring Boot application
- and how to integration unit test relational code using an in-memory H2 database

* how to implement an integration unit test using embedded resources

24



	Integration Unit Testing
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Votes and Elections Service
	2.1. Main Application Flows
	2.2. Service Event Integration

	Chapter 3. Physical Architecture
	3.1. Integration Unit Test Physical Architecture

	Chapter 4. Mongo Integration
	4.1. MongoDB Maven Dependencies
	4.2. Test MongoDB Maven Dependency
	4.3. MongoDB Properties
	4.4. MongoDB Repository
	4.5. VoteDTO MongoDB Document Class
	4.6. Sample MongoDB/VoterRepository Calls

	Chapter 5. ActiveMQ Integration
	5.1. ActiveMQ Maven Dependencies
	5.2. ActiveMQ Integration Unit Test Properties
	5.3. Service Joinpoint Advice
	5.4. JMS Publish
	5.5. ObjectMapper
	5.6. JMS Receive
	5.7. EventListener

	Chapter 6. JPA Integration
	6.1. JPA Core Maven Dependencies
	6.2. JPA Test Dependencies
	6.3. JPA Properties
	6.4. Database Schema Migration
	6.5. Flyway RDBMS Schema Migration
	6.6. Flyway RDBMS Schema Migration Files
	6.7. Flyway RDBMS Schema Migration Output
	6.8. JPA Repository
	6.9. Example VoteBO Entity Class
	6.10. Sample JPA/ElectionRepository Calls

	Chapter 7. Unit Integration Test
	7.1. ClientTestConfiguration
	7.2. Example Test

	Chapter 8. Summary

