
Docker Compose
jim stafford

Fall 2022 v2021-08-27: Built: 2022-12-07 06:18 EST

Table of Contents
1. Introduction. 1

1.1. Goals. 1

1.2. Objectives . 1

2. Development and Integration Testing with Real Resources . 2

2.1. Managing Images . 2

3. Docker Compose . 4

3.1. Docker Compose is Local to One Machine . 4

4. Docker Compose Configuration File . 5

4.1. mongo Service Definition . 5

4.2. postgres Service Definition. 6

4.3. api Service Definition . 6

4.4. Build/Download Images . 7

4.5. Default Port Assignments . 8

4.6. Compose Override Files . 8

4.7. Compose Override File Naming . 9

4.8. Multiple Compose Files . 10

4.9. Environment Files . 10

5. Docker Compose Commands . 12

5.1. Build Source Images. 12

5.2. Start Services in Foreground . 12

5.3. Project Name . 12

5.4. Start Services in Background. 13

5.5. Access Service Logs . 13

5.6. Stop Running Services . 14

6. Docker Cleanup. 15

6.1. Docker Image Prune . 16

6.2. Docker System Prune. 16

6.3. Image Repository State After Pruning . 17

7. Summary . 18

Chapter 1. Introduction
In a few previous lectures we have used the raw Docker API command line calls to perform the
desired goals. At some early point there will become unwieldy and we will be searching for a way
to wrap these commands. Years ago, I resorted to Ant and the exec command to wrap and chain my
high level goals. In this lecture we will learn about something far more native and capable to
managing Docker containers — docker-compose.

1.1. Goals
You will learn:

• how to implement a network of services for development and testing using Docker Compose

• how to operate a Docker Compose network lifecycle and how to interact with the running
instances

1.2. Objectives
At the conclusion of this lecture and related exercises, you will be able to:

1. identify the purpose of Docker Compose for implementing a network of virtualized services

2. create a Docker Compose file that defines a network of services and their dependencies

3. custom configure a Docker Compose network for different uses

4. perform Docker Compose lifecycle commands to build, start, and stop a network of services

5. execute ad-hoc commands inside running images

6. instantiate back-end services for use with the follow-on database lectures

1

https://ant.apache.org/
https://ant.apache.org/manual/Tasks/exec.html

Chapter 2. Development and Integration
Testing with Real Resources
To date, we have primarily worked with a single Web application. In the follow-on lectures we will
soon need to add back-end database resources.

We can test with mocks and in-memory versions
of some resources. However, there will come a
day when we are going to need a running copy
of the real thing or possibly a specific version.

Figure 1. Need to Integrate with Specific Real
Services

We have already gone through the work to
package our API service in a Docker image and
the Docker community has built a plethora of
offerings for ready and easy download. Among
them are Docker images for the resources we
plan to eventually use:

• MongoDB

• Postgres

It would seem that we have a path forward.
Figure 2. Virtualize Services with Docker

2.1. Managing Images
You know from our initial Docker lectures that we can easily download the images and run them
individually (given some instructions) with the docker run command. Knowing that — we could try
doing the following and almost get it to work.

2

https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/_/mongo
https://hub.docker.com/_/postgres

Manually Starting Images

$ docker run --rm -p 27017:27017 \
-e MONGO_INITDB_ROOT_USERNAME=admin \
-e MONGO_INITDB_ROOT_PASSWORD=secret mongo:4.4.0-bionic ①

$ docker run --rm -p 5432:5432 \
-e POSTGRES_PASSWORD=secret postgres:12.3-alpine ②

$ docker run --rm -p 9080:8080 \
-e MONGODB_URI=... \ ③
-e DATABASE_URL=... \
docker-hello-example:6.0.1-SNAPSHOT

① using the mongo container from Dockerhub

② using the postgres container from Dockerhub

③ using our example Spring Boot Web application; it does not yet use the databases

However, this begins to get complicated when:

• we start integrating the API image with the individual resources through networking

• we want to make the test easily repeatable

• we want multiple instances of the test running concurrently on the same machine without
interference with one another

Lets not mess with manual Docker commands for too long! There are better ways to do this with
Docker Compose.

3

Chapter 3. Docker Compose
DockerCompose is a tool for defining and running multi-container Docker applications. With
Docker Compose, we can:

• define our network of applications in a single YAML file

• start/stop applications according to defined dependencies

• run commands inside of running images

• treat the running applications as normal, running Docker images

3.1. Docker Compose is Local to One Machine
Docker Compose runs everything local. It is a modest but necessary step above Docker but far
simpler than any of the distributed environments that logically come after it (e.g., Docker Swam,
Kubernetes). If you are familiar with Kubernetes and MiniKube, then you can think of Docker
Compose is a very simple/poor man’s Helm Chart. "Poor" in that it only runs on a single machine.
"Simple" because you only need to define details of each service and not have to worry about
distributed aspects or load balancing that might come in a more distributed solution.

With Docker Compose, there

• are one or more configuration files

• is the opportunity to apply environment variables and extensions

• are commands to build and control lifecycle actions of the network

Let’s start with the Docker Compose configuration file.

4

https://docs.docker.com/compose/
https://kubernetes.io/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://helm.sh/

Chapter 4. Docker Compose Configuration
File
The Docker Compose (configuration) file is based on YAML — which uses a concise way to express
information based on indentation and firm symbol rules. Assuming we have a simple network of
three (3) services, we can limit our definition to a file version and individual services.

docker-compose.yml Shell

version: '3.8'
services:
 mongo:
 ...
 postgres:
 ...
 api:
 ...

• version - informs the docker-compose binary what features could be present within the file. I
have shown a recent version of 3.8 but our use of the file will be very basic and could likely be
set to 3 or as low as 2.

• services - lists the individual nodes and their details. Each node is represented by a Docker
image and we will look at a few examples next.

Refer to the Compose File Reference for more details.

4.1. mongo Service Definition
The mongo service defines our instance of MongoDB.

mongo Service Definition

 mongo:
 image: mongo:4.4.0-bionic
 environment:
 MONGO_INITDB_ROOT_USERNAME: admin
 MONGO_INITDB_ROOT_PASSWORD: secret
ports: ①
- "27017" ②
- "27017:27017" ③
- "37001:27017" ④
- "127.0.0.1:37001:27017" ⑤

① not assigning port# here

② 27017 internal, random external

③ 27017 both internal and external

5

https://docs.docker.com/compose/compose-file/
https://yaml.org/spec/1.2/spec.html
https://docs.docker.com/compose/compose-file/
https://hub.docker.com/_/mongo

④ 37001 external and 27017` internal

⑤ 37001 exposed only on 127.0.0.1 external and 27017` internal

• image - identifies the name and tag of the Docker image. This will be automatically downloaded
if not already available locally

• environment - defines specific environment variables to be made available when running the
image.

◦ VAR: X passes in variable VAR with value X.

◦ VAR by itself passes in variable VAR with whatever the value of VAR has been assigned to be in
the environment (i.e., environment variable or from environment file).

• ports - maps a container port to a host port with the syntax "host interface:host
port#:container port#"

◦ host port#:container port# by itself will map to add host interfaces

◦ "container port#" by itself will be mapped to a random host port#

◦ no ports defined means the container port# that do exist are only accessible within the
network of services defined within the file

4.2. postgres Service Definition
The postgres service defines our instance of Postgres.

postgres Service Definition

 postgres:
 image: postgres:12.3-alpine
ports: ①
- "5432:5432"
 environment:
 POSTGRES_PASSWORD: secret

• the default username and database name is postgres

• assigning a custom password of secret

Mapping Port to Specific Host Port Restricts Concurrency to one Instance

Mapping a container port# to a fixed host port# makes the service easily accessible
from the host via a well-known port# but restricts the number of instances that
can be run concurrently to one. This is typically what you might do with
development resources. We will cover how to do both easily — shortly.

4.3. api Service Definition
The api service defines our API server with the Votes and Elections Services. This service will

6

https://hub.docker.com/_/postgres

become a client of the other three services.

api Service Definition

 api:
 build:
 context: .
 dockerfile: Dockerfile.layered
 image: docker-hello-example:layered
 ports:
 - "${API_PORT:-8080}:8080"
 depends_on:
 - mongo
 - postgres
 environment:
 - spring.profiles.active=integration
 - MONGODB_URI=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin
 - DATABASE_URL=postgres://postgres:secret@postgres:5432/postgres

• build - identifies a source Dockerfile that can build the image for this service

◦ context - defines the path to the Dockerfile

◦ dockerfile - defines the specific name of the Dockerfile (optional in this case)

• image - identifies the name and tag used for the built image

• ports - using a ${variable:-default} reference so that we have option to expose the container
port# 8080 to a dynamically assigned host port# during testing. If API_PORT is not resolved to a
value, the default 8080 value will be used.

• depends_on - establishes a dependency between the images. This triggers a start of
dependencies when starting this service. It also adds a hostname to this image’s environment.
Therefore, the api server can reach the other services using hostnames mongo and postgres. You
will see an example of that when you look closely at the URLs in the later examples.

• environment - environment variables passed to Docker image.

◦ using spring.profiles.active to instruct API to use integration profile

◦ API is not yet using the databases, but these URLs are consistent with what will be
encountered when deployed to Heroku.

◦ if only the environment variable name is supplied, it’s value will not be defined here and
the value from external sources will be passed at runtime

4.4. Build/Download Images
We can trigger the build or download of necessary images using the docker-compose build
command or simply by starting api service the first time.

Building API Service

$ docker-compose build

7

postgres uses an image, skipping
mongo uses an image, skipping
Building api
[+] Building 0.2s (13/13) FINISHED
 => => naming to docker.io/library/docker-hello-example:layered
..

After the first start, a re-build is only performed using the build command or when the --build
option.

4.5. Default Port Assignments
If we start the services …

$ export API_PORT=1234 && docker-compose up -d ①
Creating network "docker-hello-example_default" with the default driver
Creating docker-hello-example_mongo_1 ... done
Creating docker-hello-example_postgres_1 ... done
Creating docker-hello-example_api_1 ... done

① up starts service and -d runs the container in the background as a daemon

You will notice that no ports were assigned to the unassigned mongo and postgres services. However,
the given shown port# in the output is available to the other hosts within that Docker network. If
we don’t need mongo or postgres accessible to the host’s network — we are good. The api service was
assigned a variable (value 1234) port# — which is accessible to the host’s network.

$ docker-compose ps
 Name State Ports
--
docker-hello-example_api_1 Up 0.0.0.0:1234->8080/tcp,:::1234->8080/tcp
docker-hello-example_mongo_1 Up 27017/tcp
docker-hello-example_postgres_1 Up 5432/tcp

Using Variable-Assigned API Port#

$ curl http://localhost:1234/api/hello?name=jim
hello, jim

4.6. Compose Override Files
Docker Compose files can be layered from base (shown above) to specialized. The following
example shows the previous definitions being extended to include mapped host port# mappings.
We might add this override in the development environment to make it easy to access the service
ports on the host’s local network using well-known port numbers.

8

Example Compose Override File

version: '3.8'
services:
 mongo:
 ports:
 - "27017:27017"
 postgres:
 ports:
 - "5432:5432"

Notice how the container port# is now mapped according to how the override file has specified.

Shutdown and Start New Container Instances

$ unset API_PORT
$ docker-compose down
$ docker-compose up -d

Port Mappings with Compose Override File Used

$ docker-compose ps
 Name State Ports
--
docker-hello-example_api_1 Up 0.0.0.0:8080->8080/tcp,:::8080->8080/tcp
docker-hello-example_mongo_1 Up 0.0.0.0:27017->27017/tcp,:::27017->27017/tcp
docker-hello-example_postgres_1 Up 0.0.0.0:5432->5432/tcp,:::5432->5432/tcp

Override Limitations May Cause Compose File Refactoring

There is a limit to what you can override versus augment. Single values can
replace single values. However, lists of values can only contribute to a larger list.
That means we cannot create a base file with ports mapped and then a build
system override with the port mappings taken away.

4.7. Compose Override File Naming
Docker Compose looks for a specially named file of docker-compose.override.yml in the local
directory next to the local docker-compose.yml file.

Example File Override Syntax

$ ls docker-compose.*
docker-compose.override.yml docker-compose.yml

$ docker-compose up ①

① Docker Compose automatically applies overrides from docker-compose.override.yml in this case

9

4.8. Multiple Compose Files
Docker Compose will accept a series of explicit -f file specifications that are processed from left to
right. This allows you to name your own override files.

Example File Override Syntax

$ docker-compose -f docker-compose.yml -f development.yml up ①
$ docker-compose -f docker-compose.yml -f integration.yml up
$ docker-compose -f docker-compose.yml -f production.yml up

① starting network in foreground with two configuration files, with the left-most file being
specialized by the right-most file

4.9. Environment Files
Docker Compose will look for variables to be defined in the following locations in the following
order:

1. as an environment variable

2. in an environment file

3. when the variable is named and set to a value in the Compose file

Docker Compose will use .env as its default environment file. A file like this would normally not be
checked into CM since it might have real credentials, etc.

.env Files Normally are not Part of SCM Check-in

$ cat .gitignore
...
.env

Example .env File

API_PORT=9090

You can also explicitly name an environment file to use. The following is explicitly applying the
alt-env environment file — thus bypassing the .env file.

Example Explicit Environment File

$ cat alt-env
API_PORT=9999

$ docker-compose --env-file alt-env up -d ①
$ docker ps
IMAGE PORTS
NAMES

10

dockercompose-votes-api:latest 0.0.0.0:9999->8080/tcp
...

① starting network in background with an alternate environment file mapping API port to 9999

11

Chapter 5. Docker Compose Commands

5.1. Build Source Images
With the docker-compose.yml file defined — we can use that to control the build of our source
images. Notice in the example below that it is building the same image we built in the previous
lecture.

Example Docker Compose build Output

$ docker-compose build
postgres uses an image, skipping
mongo uses an image, skipping
Building api
[+] Building 0.2s (13/13) FINISHED
 => => naming to docker.io/library/docker-hello-example:layered

5.2. Start Services in Foreground
We can start all the the services in the foreground using the up command. The command will block
and continually tail the output of each container.

Example docker-compose up Command

$ docker-compose up
docker-hello-example_mongo_1 is up-to-date
docker-hello-example_postgres_1 is up-to-date
Recreating docker-hello-example_api_1 ... done
Attaching to docker-hello-example_mongo_1, docker-hello-example_postgres_1, docker-
hello-example_api_1

We can trigger a new build with the --build option. If there is no image present, a build will be
triggered automatically but will not be automatically reissued on subsequent commands without
supplying the --build option.

5.3. Project Name
Docker Compose names all of our running services using a project name prefix. The default project
name is the parent directory name. Notice below how the parent directory name docker-hello-
example was used in each of the running service names.

Project Name Defaults to Parent Directory Name

pwd
.../svc-container/docker-hello-example

$ docker-compose up

12

docker-hello-example_mongo_1 is up-to-date
docker-hello-example_postgres_1 is up-to-date
Recreating docker-hello-example_api_1 ... done

We can explicitly set the project name using the -p option. This can be helpful if the parent
directory happens to be something generic — like target or src/test/resources.

$ docker-compose -p foo up ①
Creating network "foo_default" with the default driver
Creating foo_postgres_1 ... done ②
Creating foo_mongo_1 ... done
Creating foo_api_1 ... done
Attaching to foo_postgres_1, foo_mongo_1, foo_api_1

① manually setting project name to foo

② network and services all have prefix of foo

5.4. Start Services in Background
We can start the processes in the background by adding the -d option.

$ docker-compose up -d
Creating network "docker-hello-example_default" with the default driver
Creating docker-hello-example_postgres_1 ... done
Creating docker-hello-example_mongo_1 ... done
Creating docker-hello-example_api_1 ... done
$ ①

① -d option starts all services in the background and returns us to our shell prompt

5.5. Access Service Logs
With the services running in the background, we can access the logs using the docker-compose logs
command.

$ docker-compose logs api ①
$ docker-compose logs -f api mongo ②
$ docker-compose logs --tail 10 ③

① returns all logs for the api service

② tails the current logs for the api and mongo services.

③ returns the latest 10 messages in each log

13

5.6. Stop Running Services
If the services were started in the foreground, we can simply stop them with the <ctl>+C command.
If they were started in the background or in a separate shell, we can stop them by executing the
down command in the docker-compose.yml directory.

$ docker-compose down
Stopping docker-hello-example_api_1 ... done
Stopping docker-hello-example_mongo_1 ... done
Stopping docker-hello-example_postgres_1 ... done
Removing docker-hello-example_api_1 ... done
Removing docker-hello-example_mongo_1 ... done
Removing docker-hello-example_postgres_1 ... done
Removing network docker-hello-example_default

14

Chapter 6. Docker Cleanup
Docker Compose will mostly cleanup after itself. The only exceptions are the older versions of the
API image and the builder image that went into creating the final API images. Using my example
settings, these are all end up being named and tagged as none in the images repository.

Example Docker Image Repository State

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker-hello-example layered 9c45ff5ac1cf 17 hours ago
316MB
registry.heroku.com/ejava-docker/web latest 9c45ff5ac1cf 17 hours ago
316MB
docker-hello-example execjar 669de355e620 46 hours ago
315MB
dockercompose-votes-api latest da94f637c3f4 5 days ago
340MB
<none> <none> d64b4b57e27d 5 days ago
397MB
<none> <none> c5aa926e7423 7 days ago
340MB
<none> <none> 87e7aabb6049 7 days ago
397MB
<none> <none> 478ea5b821b5 10 days ago
340MB
<none> <none> e1a5add0b963 10 days ago
397MB
<none> <none> 4e68464bb63b 11 days ago
340MB
<none> <none> b09b4a95a686 11 days ago
397MB
...
<none> <none> ee27d8f79886 4 months ago
396MB
adoptopenjdk 14-jre-hotspot 157bb71cd724 5 months ago
283MB
mongo 4.4.0-bionic 409c3f937574 12 months ago
493MB
postgres 12.3-alpine 17150f4321a3 14 months ago
157MB
<none> <none> b08caee4cd1b 41 years ago
279MB
docker-hello-example 6.0.1-SNAPSHOT a855dabfe552 41 years ago
279MB

Docker Images are Actually Smaller than Provided SIZE

Even though Docker displays each of these images as >300MB, they may share
some base layers and — by themselves — much smaller. The value presented is the

15

space taken up if all other images are removed or if this image was exported to its
own TAR file.

6.1. Docker Image Prune
The following command will clear out any docker images that are not named/tagged and not part of
another image.

Example Docker Image Prune Output

$ docker image prune
WARNING! This will remove all dangling images.
Are you sure you want to continue? [y/N] y
Deleted Images:
deleted: sha256:ebc8dcf8cec15db809f4389efce84afc1f49b33cd77cfe19066a1da35f4e1b34
...
deleted: sha256:e4af263912d468386f3a46538745bfe1d66d698136c33e5d5f773e35d7f05d48

Total reclaimed space: 664.8MB

6.2. Docker System Prune
The following command performs the same type of cleanup as the image prune command and
performs an additional amount on cleanup many other Docker areas deemed to be "trash".

Example Docker System Prune Output

$ docker system prune
WARNING! This will remove:
 - all stopped containers
 - all networks not used by at least one container
 - all dangling images
 - all dangling build cache

Are you sure you want to continue? [y/N] y
Deleted Networks:
testcontainers-votes-spock-it_default

Deleted Images:
deleted: sha256:e035b45628fe431901b2b84e2b80ae06f5603d5f531a03ae6abd044768eec6cf
...
deleted: sha256:c7560d6b795df126ac2ea532a0cc2bad92045e73d1a151c2369345f9cd0a285f

Total reclaimed space: 443.3MB

16

6.3. Image Repository State After Pruning
After pruning the images — we have just the named/tagged image(s).

Docker Image Repository State After Pruning

$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
docker-hello-example layered 9c45ff5ac1cf 17 hours ago
316MB
registry.heroku.com/ejava-docker/web latest 9c45ff5ac1cf 17 hours ago
316MB
docker-hello-example execjar 669de355e620 46 hours ago
315MB
mongo 4.4.0-bionic 409c3f937574 12 months ago
493MB
postgres 12.3-alpine 17150f4321a3 14 months ago
157MB
docker-hello-example 6.0.1-SNAPSHOT a855dabfe552 41 years ago
279MB

17

Chapter 7. Summary
In this module we learned:

• the purpose of Docker Compose and how it is used to define a network of services operating
within a virtualized Docker environment

• to create a Docker Compose file that defines a network of services and their dependencies

• to custom configure a Docker Compose network for different uses

• perform Docker Compose lifecycle commands

• execute ad-hoc commands inside running images

Why We Covered Docker and Docker Compose

The Docker and Docker Compose lectures have been included in this course
because of the high probability of your future deployment environments for your
Web applications and to provide a more capable and easy to use environment to
learn, develop, and debug.

Where are You?

This lecture leaves you at a point where your Web application and database
instances are alive but not yet communicating. The URLs/URIs shown in this
example are consistent with what you will encounter in Heroku when deploying.
However, we have much to do before then.

Where are You Going?

In the following series of lectures we will dive into the persistence tier, do some
local development with the resources we have just setup, and then return to this
topic once we are ready to re-deploy with a database-ready Web application.

18

	Docker Compose
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Development and Integration Testing with Real Resources
	2.1. Managing Images

	Chapter 3. Docker Compose
	3.1. Docker Compose is Local to One Machine

	Chapter 4. Docker Compose Configuration File
	4.1. mongo Service Definition
	4.2. postgres Service Definition
	4.3. api Service Definition
	4.4. Build/Download Images
	4.5. Default Port Assignments
	4.6. Compose Override Files
	4.7. Compose Override File Naming
	4.8. Multiple Compose Files
	4.9. Environment Files

	Chapter 5. Docker Compose Commands
	5.1. Build Source Images
	5.2. Start Services in Foreground
	5.3. Project Name
	5.4. Start Services in Background
	5.5. Access Service Logs
	5.6. Stop Running Services

	Chapter 6. Docker Cleanup
	6.1. Docker Image Prune
	6.2. Docker System Prune
	6.3. Image Repository State After Pruning

	Chapter 7. Summary

