Docker Compose Integration Testing

jim stafford

Fall 2022 v2021-08-27: Built: 2022-12-07 06:19 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Integration Testing with Real Resources
2.1. Managing Images
3. Docker Compose Configuration File
3.1. mongo Service Definition
3.2. postgres Service Definition
3.3. activemq Service Definition
3.4. api Service Definition
3.5. Compose Override Files
4. Test Drive
4.1. Clean Starting State
4.2. Cast Two Votes
4.3. Observe Updated State
5. Inspect Images
5.1. Exec Mongo CLI
5.2. Exec Postgres CLI
5.3. Exec Impact
6. Integration Test Setup
6.1. Integration Properties
6.2. Maven Build Helper Plugin
6.3. Maven Docker Compose Plugin
6.4. Maven Docker Compose Plugin Output
6.5. Maven Failsafe Plugin
6.6. IT Test Client Configuration
6.7. Example Failsafe Output
6.8. IT Test Setup
6.9. Wait For Services Startup

7. Summary

© 00 00 00 O OO O U1 U1 U1 W W N = =

S g N e ey
© 9N o Ul W W NN R O o o

Chapter 1. Introduction

Junit WM B

In the last lecture we looked at a set of Voting %

. — iap}fvoting
Services and configured integration unit testing g | feeyeections
using simulated or other in-memory resources J
to implement an end-to-end integration thread | -~ L .~
. . T —— m—memury S

flapdood { ! .

na Slngle prOCESS. (i?ﬁm%?ﬂcery managed MongoDB) @ |r?2rggggra3;e

But what if we wanted or needed to use real Figure 1. Integration Unit Test with In-

r rces?
esources Memory/Local Resources
//
,TTest . . .
y N What if we needed to test with a real or specific
£ . .
'y casts vote 4 checks resukts version of MongoDB, ActiveMQ, Postgres, or
I N .
v Y some other resource? What if some of those
other = resources were a supporting
apifvotes apifelections . .
R Y microservice?

P save A newvote /4 newvote \A save/query We could implement an integration test— but
- how can we automate it?

_ActiveMQ
votes : Topic

e R

MongoDB
voteDTO

Postgres
voteBO

» checks results

L docker:compose ™
’ e ~

|

. docker (api)]
A)

/ .

‘ |
_ P gsts vote
. fapifvotes ‘ Japi/elections
AN / AN

[TTest

In this lecture, we will explore using Docker for

each of the integrated resources (services) and yeave newvote [4 newvote 3 save/query
leverage Docker Compose to manage our j“ker B d°°jr G ‘“"er B

individual services and the network. —— S —

— -

Po%res

wvoteDTO
—_—

Figure 3. Integration Test with Docker and Docker
Compose

1.1. Goals

You will learn:

* how to implement a network of services for development and testing using Docker Compose

* how to implement an integration test between real instances running in a virtualized

environment

* how to interact with the running instances during testing

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

= WMo

create a Docker Compose file that defines a network of services and their dependencies
execute ad-hoc commands inside running images
integrate Docker Compose into a Maven integration test phase

author an integration test that uses real resource instances with dynamically assigned ports

Chapter 2. Integration Testing with Real
Resources

We are in a situation were, we need to run integration tests against real components. These "real"
components can be virtualized, but they primarily need to contain a specific feature of a specific
version we are taking advantage of.

= checks results
-7 docker-compose ™
p e >
y ’ docker (api)
,/ITTest K i .
by A
/ \ i L |
! \ _ P gasts vote
/¥ casts vote 4 checks results /)‘ leRiese el
i . IMTest T, VAR
¥ ~
¥ save new vote |4 new wvote \A savejquery
fapifvotes /apifelections ok \io jér ‘ocker
" ActiveM
F save 4 newvote /4 newwvote ‘A savel/query MongoDE = Postgres
—_—

McmgoDB {] Postgres
voteDTO '
)

voteBO

Figure 5. Virtualize Services with Docker

Figure 4. Need to Integrate with Specific Real
Services

My example uses generic back-end resources as examples of what we need to integrate with.
However, in the age of microservices —these examples could easily be lower-level applications
offering necessary services for our client application to properly operate.

We need access to these resources in the development environment but would soon need them
during automated integration tests running regression tests in the CI server as well.

Lets look to Docker for a solution ...

2.1. Managing Images

You know from our initial Docker lectures that we can easily download the images and run them
individually (given some instructions) with the docker run command. Knowing that—we could try
doing the following and almost get it to work.

Manually Starting Images

$ docker run --rm -p 27017:27017 \
-e MONGO_INITDB_ROOT_USERNAME=admin \
-e MONGO_INITDB_ROOT_PASSWORD=secret mongo:4.4.0-bionic

$ docker run --rm -p 5432:5432 \
-e POSTGRES_PASSWORD=secret postgres:12.3-alpine

$ docker run --rm -p 61616:61616 -p 8161:8161 \
rmohr/activemq:5.15.9

$ docker run --rm -p 9080:8080 \

-e
MONGODB_URI="mongodb://admin:secret@host.docker.internal:27017/votes_db?authSource=adm
in' \

-e DATABASE _URL="'postgres://postgres:secret@host.docker.internal:5432/postgres"' \

-e spring.profiles.active=integration dockercompose-votes-api:latest

However, this begins to get complicated when:

» we start integrating the API image with the individual resources through networking
* we want to make the test easily repeatable
* we want multiple instances of the test running concurrently on the same machine without

interference with one another

Lets not mess with manual Docker commands for too long! There are better ways to do this with
Docker Compose — covered earlier. I will review some of the aspects.

Chapter 3. Docker Compose Configuration
File

The Docker Compose (configuration) file is based on YAML —which uses a concise way to express
information based on indentation and firm symbol rules. Assuming we have a simple network of
four (4) nodes, we can limit our definition to a version and services.

docker-compose.yml Shell

version: '3.8'
services:
mongo:

postgres:
activemq:

api:

Refer to the Compose File Reference for more details.

3.1. mongo Service Definition

The mongo service defines our instance of MongoDB.

mongo Service Definition

mongo:
image: mongo:4.4.0-bionic
environment:
MONGO_INITDB_ROOT_USERNAME: admin
MONGO_INITDB_ROOT_PASSWORD: secret
i ports:
- "27017:27017"

3.2. postgres Service Definition

The postgres service defines our instance of Postgres.

postgres Service Definition

postgres:
image: postgres:12.3-alpine
ports:
- "5432:5432"

environment:

https://docs.docker.com/compose/compose-file/
https://yaml.org/spec/1.2/spec.html
https://docs.docker.com/compose/compose-file/
https://hub.docker.com/_/mongo
https://hub.docker.com/_/postgres

POSTGRES_PASSWORD: secret

3.3. activemq Service Definition

The activemg service defines our instance of ActiveMQ.

activemgq Service Definition

activemq:
image: rmohr/activemqg:5.15.9
i ports:
- "61616:61616"
- "8161:8161"

* port 61616 is used for JMS communication

* port 8161 is an HTTP server that can be used for HTML status

3.4. api Service Definition

The api service defines our API server with the Votes and Elections Services. This service will
become a client of the other three services.

api Service Definition

api:

build:
context: ../dockercompose-votes-svc
dockerfile: Dockerfile

image: dockercompose-votes-api:latest

ports:
- "${API_PORT}:8080"

depends_on:
- mongo
- postgres
- activemgq

environment:
- spring.profiles.active=integration
- MONGODB_URI=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin
- DATABASE_URL=postgres://postgres:secret@postgres:5432/postgres

3.5. Compose Override Files

I left off port definitions from the primary file on purpose. That will become more evident in the
Testcontainers topic in the next lecture when we need dynamically assigned port numbers.
However, for purposes here we need well-known port numbers and can do so easily with an
additional configuration file — docker-compose.override.yml.

https://hub.docker.com/r/rmohr/activemq/

Docker Compose files can be layered from base (shown above) to specialized. The following
example shows the previous definitions being extended to include mapped host port# mappings.
We might add this override in the development environment to make it easy to access the service
ports on the host’s local network.

Example Compose Override File

version: '3.8'

services:
mongo:
ports:
- "27017:27017"
postgres:
ports:
- "5432:5432"
activemq:
ports:
- "61616:61616"
- "8161:8161"

When started —notice how the container port# is mapped according to how the override file has
specified.

Port Mappings with Compose Override File Used

$ docker ps

IMAGE PORTS

dockercompose-votes-api:latest 0.0.0.0:9090->8080/tcp

postgres:12.3-alpine 0.0.0.0:5432->5432/tcp, 0.0.0.0:32812->5432/tcp
mongo:4.4.0-bionic 0.0.0.0:27017->27017/tcp, 0.0.0.0:32813->27017/tcp
rmohr/activemq:5.15.9 1883/tcp, 5672/tcp, 0.0.0.0:8161->8161/tcp, 61613-

61614/tcp, 0.0.0.0:61616->61616/tcp @
@ notice that only the ports we mapped are exposed

Override Limitations May Cause Compose File Refactoring

There is a limit to what you can override versus augment. Single values can
A replace single values. However, lists of values can only contribute to a larger list.
That means we cannot create a base file with ports mapped and then a build

system override with the port mappings taken away.

Chapter 4. Test Drive

Lets test out our services before demonstrating a few more commands. Everything is up and
running and only the API port is exposed to the local host network using port# 9090.

Running Network Port Mapping

$ docker ps

IMAGE PORTS

dockercompose-votes-api:latest 0.0.0.0:9090->8080/tcp @
postgres:12.3-alpine 5432/tcp

mongo:4.4.0-bionic 27017/tcp

rmohr/activemq:5.15.9 1883/tcp, 5672/tcp, 8161/tcp, 61613-61614/tcp,
61616/tcp

@ only the API has its container port# (8080) mapped to a host port# (9090)

4.1. Clean Starting State

We start off with nothing in the Vote or Election databases.

Clean Starting State

$ curl http://localhost:9090/api/votes/total
0

$ curl http://localhost:9090/api/elections/counts
{

"date" : "1970-01-01T00:00:007",

"results" : []

}

4.2. Cast Two Votes

We can then cast votes for different choices and have them added to MongoDB and have a JMS
message published.

Cast Two Votes

$ curl -X POST http://localhost:9090/api/votes -H "Content-Type: application/json" -d
"{"source":"jim","choice":"quisp"}'
{
"id" : "5f3Teed580cfed74aeaalb36",
"date" : "2020-08-11T01:05:25.1685057",
"source" : "jim",
"choice" : "quisp"
}
$ curl -X POST http://localhost:9090/api/votes -H "Content-Type: application/json" -d

"{"source":"jim","choice": "quake"}'

{
"id" : "5f31eee080cfed74aeaal537",
"date" : "2020-08-11T01:05:36.3740437",
"source" : "jim",
"choice" : "quake"

}

4.3. Observe Updated State

At this point we can locate some election results in Postgres using API calls.

Updated State

$ curl http://localhost:9090/api/elections/counts

{
"date" : "2020-08-11T01:05:36.3747",
"results" : [{
"choice" : "quake",
"votes" : 1
oA
"choice" : "quisp",
"votes" : 1
F]

}

Chapter 5. Inspect Images

This is a part that I think is really useful and easy. Docker Compose provides an easy interface for
running commands within the images.

5.1. Exec Mongo CLI

In the following example, I am running the mongo command line interface (CLI) command against
the running mongo service and passing in credentials as command line arguments. Once inside, I can
locate our votes_db database, votes collection, and two documents that represent the votes I was
able to cast earlier.

Exec Command Against Running mongo Image

$ docker-compose exec mongo mongo -u admin -p secret --authenticationDatabase admin @
MongoDB shell version v4.4.0

connecting to:
mongodb://127.0.0.1:27017/7authSource=admin&compressors=disabled&gssapiServiceName=mon
godb

Implicit session: session { "id" : UUID("1fbd@9ab-73e3-459f-b5f5-5d23903f672c") }
MongoDB server version: 4.4.0

> show dbs @

admin 0.000GB

config 0.000GB

local 0.000GB

votes_db 0.000GB

> use votes_db

switched to db votes_db

> show collections

votes

> db.votes.find({},{"choice":1}) ®

{ "_id" : ObjectId("5f31eed580cfe474aeaa1536"), "choice" : "quisp" }
{ "_id" : ObjectId("5f31eee080cfed474aeaa1537"), "choice" : "quake" }
> exit @

bye

@ running mongo CLI command inside running mongo image with command line args expressing
credentials
@ running CLI commands to inspect database

@ listing documents in the votes database

@ exiting CLI and returning to host shell

5.2. Exec Postgres CLI

In the following example, I am running the psql CLI command against the running postgres service
and passing in credentials as command line arguments. Once inside, I can locate our Flyway

10

migration and VOTE table and list some of the votes that are in the election.

Exec Command Against Running postgres Image

$ docker-compose exec postgres psql -U postgres @
psql (12.3)
Type "help" for help.

postgres=# \d+ @
List of relations

Schema | Name | Type | Owner | Size

public | flyway_schema_history | table | postgres | 16 kB |

public | vote | table | postgres | 8192 bytes | countable votes for

election
(2 rows)

postgres=# select * from vote; ®
id | choice | date | source
-------------------------- T T
5f31eed580cfed74aeaal536 | quisp | 2020-08-11 01:05:25.168 | jim
5f31eee@80cfed74aeaal537 | quake | 2020-08-11 01:05:36.374 | jim
(2 rows)

postgres=ff \q @

Description

® running psql CLI command inside running postgres image with command line args expressing

credentials
@ running CLI commands to inspect database
® listing table rows in the vote table

@ exiting CLI and returning to host shell

5.3. Exec Impact

With the capability to exec a command inside the running containers, we can gain access to a
significant amount of state of our application and databases without having to install any software

beyond Docker.

11

Chapter 6. Integration Test Setup

At this point we should understand what Docker Compose is and how to configure it for use with
our specific integration test. I now want to demonstrate it being used in an automated "integration
test" where it will get executed as part of the Maven integration-test phases.

6.1. Integration Properties

We will be launching our API image with the following Docker environment expressed in the
Docker Compose file.

API Docker Environment

environment:
- spring.profiles.active=integration
- MONGODB_URI=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin
- DATABASE_URL=postgres://postgres:secret@postgres:5432/postgres

That will get digested by the run_env.sh script to produce the following.

Spring Boot Properties

--spring.datasource.url=jdbc:postgresql://postgres:5432/postgres \
--spring.datasource.username=postgres \

--spring.datasource.password=secret \
--spring.data.mongodb.uri=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin

That will be integrated with the following properties from the integration profile.
application-integration.properties

#activemq
spring.activemq.broker-url=tcp://activemq:61616

#rdbms

spring.jpa.show-sql=true
spring.jpa.generate-ddl=false
spring.jpa.hibernate.ddl-auto=validate
spring.flyway.enabled=true

I have chosen to hard-code the integration URL for ActiveMQ into the properties file since we won’t
be passing in an ActiveMQ URL in production. The MongoDB and Postgres properties will originate
from environment variables versus hard coding them into the integration properties file to better
match the production environment and further test the run_env.sh launch script.

12

6.2. Maven Build Helper Plugin

We will want a random, not in use port# assigned when we run the integration tests so that
multiple instances of the test can be run concurrently on the same build server without colliding.
We can leverage the build-helper-maven-plugin to identify a port# and have it assigned the value to
a Maven property. I am assigning it to a docker.http.port property that I made up.

Generate Random Port# for Integration Test

<!-- assigns a random port# to property server.http.port -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>build-helper-maven-plugin</artifactId>
<executions>
<execution>
<id>reserve-network-port</id>
<goals>
<goal>reserve-network-port</goal>
</goals>
<phase>pre-integration-test</phase>
<confiquration>
<portNames>
<portName>docker .http.port</portName> @
</portNames>
</configuration>
</execution>
</executions>
</plugin>

® a dynamically obtained network port# is assigned to the docker.http.port Maven property
The following is an example output of the build-helper-maven-plugin during the build.

Example Maven Build Helper Plugin Output

[INFO] --- build-helper-maven-plugin:3.1.0:reserve-network-port (reserve-network-port)
@ dockercompose-votes-it ---
[INFO] Reserved port 60616 for docker.http.port

6.3. Maven Docker Compose Plugin

After generating a random port#, we can start our Docker Compose network. I am using the
https://github.com/br4chu/docker-compose-maven-plugin docker-compose-maven-plugin] to perform
that role. It automatically hooks into the pre-integration-test phase to issue the up command and
the post-integration-test phase to issue the down command when we configure it the following
way. It also allows us to name and pass variables into the Docker Compose file.

<plugin>

13

https://github.com/br4chu/docker-compose-maven-plugin

<groupId>io.brachu</groupld>
<artifactId>docker-compose-maven-plugin</artifactId>
<configuration>
<projectName>${project.artifactId}</projectName>
<file>${project.basedir}/docker-compose.yml</file>
<env>
<API_PORT>${docker.http.port}</API_PORT> @
</env>
</confiquration>
<executions>
<execution>
<goals>
<goal>up</goal>
<goal>down</goal>
</goals>
</execution>
</executions>
</plugin>

@ dynamically obtained network port# is assigned to Docker Compose file’s API_PORT variable,
which controls the port mapping of the API server

6.4. Maven Docker Compose Plugin Output

The following shows example plugin output during the pre-integration-test phase that is starting
the services prior to running the tests.

Example Maven Docker Compose Plugin pre-integration-test Output

[INFO] --- docker-compose-maven-plugin:0.8.0:up (default) @ dockercompose-votes-it ---
Creating network "dockercompose-votes-it_default" with the default driver

Creating dockercompose-votes-it_mongo_1 ... done
Creating dockercompose-votes-it_api_1 ... done

The following shows example plugin output during the post-integration-test phase that is shutting
down the services after running the tests.

Example Maven Docker Compose Plugin post-integration-test Output

[INFO] --- docker-compose-maven-plugin:0.8.0:down (default) @ dockercompose-votes-it

Killing dockercompose-votes-it_api_1

Killing dockercompose-votes-it_api_1 ... done
Killing dockercompose-votes-it_postgres_1 ... done
Removing dockercompose-votes-it_mongo_1 ... done
Removing dockercompose-votes-it_postgres_1 ... done

Removing network dockercompose-votes-it_default

14

6.5. Maven Failsafe Plugin

The following shows the configuration of the maven-failsafe-plugin. Generically, it runs in the
integration-test phase, matches/runs the IT tests, and adds test classes to the classpath. More
specific to Docker Compose — it accepts the dynamically assigned port# and passes it to JUnit using
the it.server.port property.

Example Failsafe Plugin Configuration

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<executions>
<execution>
<id>integration-test</id>
<goals>
<goal>integration-test</goal>
</goals>
<confiquration>
<includes>
<include>**/*IT.java</include>
</includes>
<systemPropertyVariables>
<it.server.port>${docker.http.port}</it.server.port> @
</systemPropertyVariables>
<additionalClasspathElements>
<additionalClasspathElement>${basedir}/target/classes</additionalClasspathElement>
</additionalClasspathElements>
</configuration>
</execution>
</executions>
</plugin>

@ passing in generated docker.http.port value into it.server.port property

At this point, both Docker Compose and Failsafe/JUnit have been given the same dynamically
assigned port#.

6.6. IT Test Client Configuration

The following shows the IT test configuration class that maps the it.server.port property to the
baseUrl for the tests.

ClientTestConfiguration Mapping it.server.port to baseUrl

@SpringBootConfiguration()
@EnableAutoConfiguration //needed to setup logging
public class ClientTestConfiguration {
@Value("${it.server.host:localhost}")
private String host;

15

("${it.server.port:9090}") @
private int port;

public URI baseUrl() {
return UriComponentsBuilder.newInstance()

.scheme("http")
.host(host)
.port(port)
.build()
Ltolri();

}

public URI electionsUr1(URI baseUrl) {
return UriComponentsBuilder.fromUri(baseUrl).path("api/elections")
.build().toUri();
}

public RestTemplate anonymousUser(RestTemplateBuilder builder) {
RestTemplate restTemplate = builder.build();
return restTemplate;

@ API port# property injected through Failsafe plugin configuration

6.7. Example Failsafe Output

The following shows the Failsafe and JUnit output that runs during the integration-test.

Example Failsafe Output

[INFO] --- maven-failsafe-plugin:3.0.0-M4:integration-test (integration-test) @
dockercompose-votes-it ---

[INFO]

L] mmmm

[INFO] TESTS

[INFO] -------mmmmmmmmmm e

[INFO] Running info.ejava.examples.svc.docker.votes.ElectionIT

...ElectionIT#init:46 votesUrl=http://localhost:60616/api/votes @
...ElectionIT#init:47 electionsUrl=http://localhost:60616/api/elections

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: 0, Time elapsed: 10.372 s - in
info.ejava.examples.svc.docker.votes.ElectionIT

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @

@ URLs with dynamic host port# assigned for API

16

6.8. IT Test Setup

The following shows the common IT test setup where the various URLs are being constructed
around the injected.

IT Test Setup

(classes={ClientTestConfiguration.class},
webEnvironment = SpringBootTest.WebEnvironment.NONE)

public class ElectionIT {
private RestTemplate restTemplate;
private URI votesUrl;

private URI electionsUrl;
private static Boolean serviceAvailable;

public void init() {
log.info("votesUr1={}", votesUrl);
log.info("electionsUrl={}", electionsUrl);

6.9. Wait For Services Startup

We have at least one more job to do before our tests— we have to wait for the API server to finish
starting up. We can add that logic to a @BeforeEach and remember the answer from the first

attempt in all following attempts.

Example Wait For Services Startup

@BeforeEach
public void serverRunning() {
List<URI> urls = new ArraylList<>(Arrays.asList(
UriComponentsBuilder.fromUri(votesUrl).path("/total").build().toUri(),

UriComponentsBuilder.fromUri(electionsUrl).path("/counts").build().toUri()
)i

if (serviceAvailable!=null) { assumeTrue(serviceAvailable);}
else {
assumeTrue(() > { @®
for (int i=0; i<10; i++) {
try {
for (Iterator<URI> itr = urls.iterator(); itr.hasNext();) {

URI url = itr.next();
restTemplate.getForObject(url, String.class); @

17

itr.remove(); ®
}
return serviceAvailable = true; @
} catch (Exception ex) {
//...
}
}

return serviceAvailable=false;

H;

@ Assume.assumeTrue will not run the tests if evaluates false
@ checking for a non-exception result

® removing criteria once satisfied

@ evaluate true if all criteria satisfied

At this point our tests are the same as most other Web API test where we invoke the server using
HTTP calls using the assembled URLs.

18

Chapter 7. Summary

In this module we learned:

* to create a Docker Compose file that defines a network of services and their dependencies
* to integrate Docker Compose into a Maven integration test phase

* to implement an integration test that uses dynamically assigned ports

execute ad-hoc commands inside running images

19

	Docker Compose Integration Testing
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Integration Testing with Real Resources
	2.1. Managing Images

	Chapter 3. Docker Compose Configuration File
	3.1. mongo Service Definition
	3.2. postgres Service Definition
	3.3. activemq Service Definition
	3.4. api Service Definition
	3.5. Compose Override Files

	Chapter 4. Test Drive
	4.1. Clean Starting State
	4.2. Cast Two Votes
	4.3. Observe Updated State

	Chapter 5. Inspect Images
	5.1. Exec Mongo CLI
	5.2. Exec Postgres CLI
	5.3. Exec Impact

	Chapter 6. Integration Test Setup
	6.1. Integration Properties
	6.2. Maven Build Helper Plugin
	6.3. Maven Docker Compose Plugin
	6.4. Maven Docker Compose Plugin Output
	6.5. Maven Failsafe Plugin
	6.6. IT Test Client Configuration
	6.7. Example Failsafe Output
	6.8. IT Test Setup
	6.9. Wait For Services Startup

	Chapter 7. Summary

