Docker Images

jim stafford

Fall 2022 v2022-07-23: Built: 2022-12-07 06:18 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Containers
2.1. Container Deployments
3. Docker Ecosystem
3.1. Container Builders
3.2. Container Runtimes
4. Docker Images
5. Basic Docker Image
5.1. Basic Dockerfile
5.2. Basic Docker Image Build Output
5.3. Local Docker Registry
5.4. Running Docker Image
5.5. Docker Run Command with Arguments
5.6. Running Docker Image
5.7. Using the Docker Image
5.8. Docker Image is Layered
5.9. Application Layer
5.10. Spring Boot Plugin
5.11. Building Docker Image using Buildpack
5.12. Buildpack Image in Local Docker Repository
5.13. Buildpack Image Execution
5.14. Inspecting Buildpack Image
6. Layers
6.1. Analyzing Basic Docker Image
6.2. Analyzing Basic Buildpack Image
7. Adding Fine-grain Layering
7.1. Configure Layer-ready Executable JAR
7.2. Building and Inspecting Layer-ready Executable JAR
7.3. Default Executable JAR Layers
8. Layered Buildpack Image
8.1. Dependency Layer
8.2. Snapshot Layer
8.3. Application Layer
8.4. Review: Single Layer Application
9. Layered Docker Image
9.1. Example Layered Dockerfile

© © 00 00 00 I N o0 O U1 U1 b W W W N DN R ==

NN NN R R R R R R R R | Rl) |)
NN O O © © © 00 9 J 9 U hN R RO

9.2. Example Buildo 22
9.3. Dependency Layer 23
9.4. Snapshot Layer 23
9.5. Application Layer 24

10, SUMIMATY . . oo 25

Chapter 1. Introduction

We have seen where we already have many of the tools we need to be able to develop, test, and
deploy a functional application. However, there will become a point where things will get
complicated.
* What if everything is not a Spring Boot application and requires a unique environment?
* What if you end up with dozens of applications and many versions?
- Will everyone on your team be able to understand how to instantiate them?

Lets take a user-level peek at the Docker container in order to create a more standardized look to
all our applications.

1.1. Goals

You will learn:

* the purpose of an application container
* to identify some open standards in the Docker ecosystem
* to build a Docker images using different techniques

* to build a layered Docker image

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

build a basic Docker image with an executable JAR using a Dockerfile and docker commands
build a basic Docker image with the Spring Boot Maven Plugin and buildpack
build a layered Docker image with the Spring Boot Maven Plugin and buildpack

build a layered Docker image using a Dockerfile and docker commands

SR A A

run a docker image hosting a Spring Boot application

Chapter 2. Containers

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one
computing environment to another. A Docker container image is a
lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools,
system libraries and settings.

— docker.com, "What is a Container" A standardized unit of software

2.1. Container Deployments

The following diagrams represent three common application deployment strategies: native, virtual
machine, and container.

App App App App App App
App App App | | |
Guest 0S Guest 0S Guest 0S Container Container Container
Host OS5
Hypervisor Host OS
Figure 1. Native Deployment . ;
g proy Figure 3. Container Deployment

Host OS

Figure 2. VM Deployment

* native - has the performance advantage of running on bare metal but the disadvantage of
having full deployment details exposed and the vulnerability of directly sharing the same host
operating system with other processes.

» virtual machine - (e.g, VMWare, VirtualBox) has the advantage of isolation from other
processes and potential encapsulation of installation details but the disadvantage of a separate
and distinct guest operating systems running on the same host with limited sharing of
resources.

* container - has the advantage of isolation from other processes, encapsulation of installation
details, and runs in a lightweight container runtime that efficiently shares the resources of the
host OS with each container.

https://www.docker.com/resources/what-container

Chapter 3. Docker Ecosystem

Docker is an ecosystem of tooling that covers a lot of topics. Two of which are the container image
and runtime. The specifications of both of these have been initiated by Docker —the
company —and transitioned to the Open Container Initiative (OCI)—a standards body— that
maintains the definition of the image and runtime specs and certifications.

This has allowed independent toolsets (for building Docker images) and runtimes (for running
Docker images under different runtime and security conditions). For example, the following is a
sample of the alternative builders and runtimes available.

3.1. Container Builders

Docker —the company — offers a Docker image builder. However, the builder requires a daemon
with a root-level installation. Some of the following simply implement a builder tool:

buildah

ocibuilder

* orca-build
* genuinetools/img
* GoogleContainerTools/kaniko
I use kaniko on a daily basis to build images within a CI/CD build pipeline. Since the jobs within the

pipeline all run within Docker images, it helps avoid having to setup Docker within Docker and
running the images in privileged mode.

3.2. Container Runtimes

Docker —the company —offers a container runtime. However, this container runtime has a
complex lifecycle that includes daemons and extra processes. Some of the following simply run an
image.

* podman

» kata containers

* Windows Hyper-V Containers

e Cri-o

https://buildah.io/
https://github.com/ocibuilder/ocibuilder
https://github.com/cyphar/orca-build
https://github.com/genuinetools/img
https://github.com/GoogleContainerTools/kaniko
https://www.howtogeek.com/devops/how-and-why-to-run-docker-inside-docker/
https://podman.io/
https://katacontainers.io/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://cri-o.io/

Chapter 4. Docker Images

A Docker image is a tar file of layered, intermediate levels of the application. A layer within a
Docker image contains a tar file of the assigned artifacts for that layer. If two or more Docker files
share the same base layer —there is no need to repeat the base layer in that repository. If we
change the upper levels of a Docker file, there is no need to rebuild the lower levels. These aspects
will be demonstrated within this lecture and optimized in the tooling available to use within Spring

Boot.

Chapter 5. Basic Docker Image

We can build a basic Docker image from a normal executable JAR created from the Spring Boot
Maven Plugin. To prove that—we will return to the hello-docker-example used in the previous
Heroku deployment lecture.

Example Requires Docker Installed

A Implementing the first example will require docker —the product—to be
installed. Please see the development environment Docker setup for references.

The following shows us starting with a typical example web application that listens to port 8080
when built and launched. The build happens to automatically invoke the spring-boot:repackage
goal. However, if that is not the case, just run mvn spring-boot:repackage to build the Spring Boot
executable JAR.

Building and Running Basic Docker Image
$ mvn clean package @
target/
|-- [31M] docker-hello-example-6.0.1-SNAPSHOT-SNAPSHOT-bootexec.jar
|-- [9.7K] docker-hello-example-6.0.1-SNAPSHOT. jar

$ java -jar target/docker-hello-example-6.0.1-SNAPSHOT-bootexec.jar @

Tomcat started on port(s): 8080 (http) with context path "'
Started DockerHelloExampleApp in 3.058 seconds (JVM running for 3.691)

@ building the executable Spring Boot JAR

@ running the application

5.1. Basic Dockertfile

We can build a basic Docker image manually by adding a Dockerfile and issuing a Docker command
to build it.

The basic Dockerfile below extends a base Open]JDK 17 image from the global Docker repository,
adds the executable JAR, and registers the default commands to use when running the image. It
happens to have the name Dockerfile.execjar, which will be referenced by a later command.

Example Basic Dockerfile (named Dockerfile.execjar)
FROM openjdk:17.0.2 @

COPY target/*-bootexec.jar application.jar @
ENTRYPOINT ["java", "-jar", "application.jar"] @

@ building off a base openjdk 14 image

https://jcs.ep.jhu.edu/ejava-springboot/coursedocs/content/html_single/ejava-devenv-notes.html#id-optionally-install-docker-not-immediately

@ copying executable JAR into the image

® establishing default command to run the executable JAR

5.2. Basic Docker Image Build Output

The Docker build command processes the Dockerfile and produces an image. We supply the
Dockerfile, the directory (.) of the source files referenced by the Dockerfile, and an image name and

tag.
Example docker build Command Output

$ docker build . -f Dockerfile.execjar -t docker-hello-example:execjar @ @ @ @

=> [1/2] FROM docker.io/library/openjdk:17.0 ... 5.3s
=> [2/2] COPY target/*-bootexec.jar application.jar 0.8s

Step 1/3 : FROM adoptopenjdk:14-jre-hotspot

Step 2/3 : COPY target/*.jar application.jar

Step 3/3 : ENTRYPOINT ["java", "-jar", "application.jar"]
Successfully built eda93db54671

Successfully tagged docker-hello-example:execjar

@ build - command to build Docker image
@ . - current directory is default source
® -f - path to Dockerfile, if not Dockerfile in current directory

@ name:tag - name and tag of image to create

Dockerfile is default name for Dockerfile

o Default Docker file name is Dockerfile. This example will use multiple Dockerfiles,
so the explicit -f naming has been used.

5.3. Local Docker Registry

Once the build is complete, the image is available in our local repository with the name and tag we

assigned.

Example Local Repository

$ docker images | egrep 'docker-hello-example|REPQ'
REPOSITORY TAG IMAGE ID CREATED SIZE
docker-hello-example execjar eda93db54671 12 minutes ago 504MB

* REPOSITORY - names the primary name of the Docker image

* TAG - primarily used to identify versions and variants of repository name. latest is the default

tag

* IMAGE ID - is a hex string value that identifies the image. The repository:tag label just happens
to point to that version right now, but will advance in a future change/build.

» SIZE - is total size if exported. Since Docker images are layered, multiple images sharing the
same base image will supply much less overhead than reported here while staged in a

repository

5.4. Running Docker Image

We can run the image with the docker run command. The following example shows running the
docker-hello-image with tag execjar, exposing port 8080 within the image as port 9090 on localhost (
-p 9090:8080), running in interactive mode (-it; optional here, but important when using as
interactive shell), and removing the runtime image when complete (--rm).

Example Docker Run Command

$ docker run --rm -it -p 9090:8080 docker-hello-example:execjar ® @ @ @

. _ ___06
VAN VAR G I W W W
CON___ T2 2N VYNV
A\ VZRD J B 10 1 I A O 1 RO B B IO RO

S N RO U O U I DO B A A A
=== ll———=—— W
:: Spring Boot :: (2.7.0)

Tomcat started on port(s): 8080 (http) with context path "'
Started DockerHelloExampleApp in 4.049 seconds (JVM running for 4.784)

@ run - run a command in a new Docker image

@ --rm - remove the image instance when complete

® -it allocate a pseudo-TTY (-t) for an interactive ("-i) shell
@ -p - map external port 9090 to 8080 of the internal process

® Spring Boot App launched with no arguments

5.5. Docker Run Command with Arguments

Arguments can also be passed into the image. The example below passes in a standard Spring Boot
property to turn off printing of the startup banner.

Example Docker Run Command with Arguments

$ docker run --rm -it -p 9090:8080 docker-hello-example:execjar --spring.main.banner
-mode=off

Q)
Tomcat started on port(s): 8080 (http) with context path "'

Started DockerHelloExampleApp in 4.049 seconds (JVM running for 4.784)

@ spring.main.banner-mode property passed to Spring Boot App and disabled banner printing

5.6. Running Docker Image

We can verify the process is running using the Docker ps command.

Example docker ps Command

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

807816369359 docker-hello-example:execjar "java -jar applicati--" 4 minutes ago

Up 4 minutes 0.0.0.0:9090->8080/tcp practical_agnesi

* CONTAINER ID - hex string we can use to refer to this running (or later terminated) instance
* IMAGE - REPO:TAG executed

* COMMAND - command executed upon entry

* CREATED - when started

» STATUS - run status. Use docker ps -ato locate all images and not just running images

* PORTS - lists ports exposed within image and what they are mapped to externally on the host

* NAMES - textual name alias for instance. Can be used interchangeably with containerlId. Can be
explicitly set with --name foo option prior to the image parameter, but must be unique

5.7. Using the Docker Image

We can call our Spring Boot process within the image using the mapped 9090 port.

$ curl http://localhost:9090/api/hello?name=jim
hello, jim

5.8. Docker Image is Layered
The Docker image is a TAR file that is made up of layers

Example Docker Image Tarfile Contents

$ docker save docker-hello-example:execjar > image.tar

Mac:image$ tar tf image.tar
27dcc15ccaaac941791ba5b826356a254e70c85d4c9c8954e9c4eb2873506a4c8/
27dcc15ccaaac941791bab826356a254e70c85d4c9c8954e9c4eb2873506a4c8/VERSION
27dcc15ccaaac941791ba5826356a254e70c85d4c9c8954e9c4eb2873506a4c8/json
27dcc15ccaaac941791ba5b826356a254e70c85d4c9c8954e9c4eb2873506a4c8/1ayer . tar
30474011735a0c15c8ea43b7291479207b357b9fc@8cc47a5e4a35715e9a1768/
304740117a5a0c15c8ea43b7291479207b357b9fc@8cc47a5e4a357f5e9a1768/VERSION
304740117a5a0c15c8ea43b7291479207b357b9fc@8cc47a5e4a357f5e9a1768/json

30474011735a0c15c8ea43b7291479207b357b9fc@8cc47a5e4a357f5e9a1768/1ayer . tar

a365151212a9241ae11ad8498df67b41943ea4943f4fae8f88bcb@b81168803d/
a365151212a9241ae11ad8498df67b41943ea4943f4fae8f88bcb@b81168803d/VERSION
a3651512f2a9241ae11ad8498df67b4f943ea4943f4fae8f88bcb@b81168803d/json
a365151212a9241ae11ad8498df67b41943ea4943f4fae8f88bcb0b81168803d/1ayer . tar

manifest.json
repositories
This specific example has seven (7) layers.

Example Layer Count

$ tar tf image.tar | grep layer.tar | wc -1
7

5.9. Application Layer

If we untar the Docker image and poke around, we can locate the layer that contains our executable
JAR file. All 25M of it in one place.

Example Application Layer

$ tar tf ./a3651512f2a9241ae11ad8498df67b4f943ead943f4fae8f88bch@b81168803d/1ayer. tar
application.jar @

1s -1h ./a3651512f2a9241ae11ad8498df67b4f943ea4943f4fae8f88bcbAb81168803d/1ayer.tar
25M ./a365151212a92413e11ad8498df67b41943ea4943f4fae8f88bcb@b81168803d/1ayer.tar

® one of the layers contains our application layer and is made up of a single Spring Boot
executable JAR

There are a few things to note about what we uncovered in this section

1. the Docker image is not a closed, binary representation. It is an openly accessible layer of files
as defined by the OCI Image Format Specification.

2. our application is currently implemented as a single 25MB layer with a single Spring Boot
executable JAR. Our code was likely only a few KBytes of that 25MB.

Hold onto both of those points when covering the next topic.

5.10. Spring Boot Plugin

Starting with Spring Boot 2.3 and its enhanced support for cloud technologies, the Spring Boot
Maven Plugin now provides support for building a Docker image using buildpack — not Docker and
no Dockerfile.

https://github.com/opencontainers/image-spec
https://paketo.io/

$ mvn spring-boot:help

spring-boot:build-image
Package an application into a OCI image using a buildpack.

Buildpack is an approach to building Docker images based on strict layering concepts that Docker
has always prescribed. The main difference with buildpack is that the layers are more
autonomous — backed by a segment of industry — allowing for higher level application layers to be
quickly rebased on top of patched operating system layers without fully rebuilding the image.

Joe Kutner from Heroku stated at a Spring One Platform conference that they were able to patch
10M applications overnight when a serious bug was corrected in a base layer. This was due to being
able to rebase the application specific layers with a new base image using buildpack technology
and without having to rebuild the images. "

5.11. Building Docker Image using Buildpack

If we look at the portions of the generated output, we will see

* 15 candidate buildpacks being downloaded

» one of the 5 used buildpacks is specific to spring-boot

* various layers are generated and reused to build the image
* our application still ends up in a single layer

* the image is generated, by default using the Maven artifactld as the image name and version
number as the tag

Example Maven Building using Buildpack
$ mvn clean package spring-boot:build-image -DskipTests

[INFO] --- spring-boot-maven-plugin:2.7.0:build-image (default-cli) @ docker-hello-
example ---

[INFO] Building image 'docker.io/library/docker-hello-example:6.0.1-SNAPSHOT'

[INFO]

[INFO] > Pulling builder image 'gcr.io/paketo-buildpacks/builder:base-platform-api-
0.3" 6%

[INFO] > Pulling builder image 'gcr.io/paketo-buildpacks/builder:base-platform-api-
0.3"' 100%

[INFO] > Pulled builder image 'gcr.io/paketo-
buildpacks/builder@sha256:6d625fe@0a2b5c4841eccb6863ab3d8b6f83c3138875F48bab9502abc593
ab2e’

[INFO] > Pulling run image 'gcr.io/paketo-buildpacks/run:base-cnb' 100%

[INFO] > Pulled run image 'gcr.io/paketo-
buildpacks/run@sha256:087a6a98ec8846e2b8d75ae1d563b0a2e0306dd04055c63e04dcb172f6ff6bId

[INFO] > Executing lifecycle version v0.8.1

10

https://youtu.be/J2SXkmOo8iQ?t=2739

[INFO] > Using build cache volume 'pack-cache-2432a78c0232.build’

[INFO]
[INFO] > Running creator
[INFO] [creator] ===> DETECTING

[INFO] [creator] 5 of 16 buildpacks participating
[INFO] [creator] paketo-buildpacks/spring-boot 2.4.1

[INFO] [creator] ===> EXPORTING

[INFO] [creator] Reusing layer 'launcher'’

[INFO] [creator] Adding layer 'paketo-buildpacks/bellsoft-liberica:class-
counter'

[INFO] [creator] Reusing layer 'paketo-buildpacks/bellsoft-liberica:java-
security-properties’

[INFO] [creator] Adding 1/1 app layer(s)

[INFO] [creator] Adding layer 'config'

[INFO] [creator] *** Tmages (10a764b20812):

[INFO] [creator] docker.io/1library/docker-hello-example:6.0.1-SNAPSHOT
[INFO]

[INFO] Successfully built image 'docker.io/library/docker-hello-example:6.0.1-
SNAPSHOT'

5.12. Buildpack Image in Local Docker Repository

The newly built image is now installed into the local Docker registry. It is using the Maven GAV
artifactld for the repository and version for the tag.

Docker Repository with both Images

$ docker images | egrep 'docker-hello-example|IMAGE'

REPOSITORY TAG IMAGE ID CREATED SIZE
docker-hello-example execjar eda93db54671 40 minutes ago 315MB @D
docker-hello-example 6.0.1-SNAPSHOT 10a764b20812 41 years ago 279MB @

@ NOTE: sizes were from a later build using newer versions of Spring Boot
One odd thing is the timestamp used (41 years ago) for the created date with the

o build pack image. Since it is referring to the year 1970 (new java.util.Date(0) UTC),
we can likely assume there was a 0 value in a timestamp field somewhere.

5.13. Buildpack Image Execution

Notice that when we run the newly built image that was built with buildpack, we get a little
different behavior at the beginning where some base level memory tuning is taking place.

11

Example Buildpack Image Execution

$ docker run --rm -it -p 9090:8080 docker-hello-example:6.0.1-SNAPSHOT

Container memory limit unset. Configuring JVM for 1G container.

Calculated JVM Memory Configuration: -XX:MaxDirectMemorySize=10M
-XX:MaxMetaspaceSize=87032K -XX:ReservedCodeCacheSize=240M -Xss1M -Xmx449543K (Head
Room: 0%, Loaded Class Count: 12952, Thread Count: 250, Total Memory: 1.0G)

Adding 127 container CA certificates to JVM truststore

Spring Cloud Bindings Boot Auto-Configuration Enabled

Tomcat started on port(s): 8080 (http) with context path "'
Started DockerHelloExampleApp in 3.589 seconds (JVM running for 4.3)

The following shows we are able to call the new running image.

Example Buildpack Image Call

$ curl http://localhost:9090/api/hello?name=jim
hello, jim

5.14. Inspecting Buildpack Image

If we save off the newly built image and briefly inspect, we will see that is contains the same TAR-
based layering scheme but will 21 versus 7 layers in this specific example.

Buildpack Layer Count

$ docker save docker-hello-example:6.0.1-SNAPSHOT > image.tar
$ tar tf image.tar | grep layer.tar | wc -1
21

If we untar the mage and poke around, we can eventually locate our application and notice that it
happens to be in exploded form versus executable JAR form. We can see our code and dependency
libraries separately.

Buildpack Application Layer
$ tar tf 6e2b5eb3b4b11627cce2ca’c8aeb7de68a7a54b56b15ea4d43edal4d2b1f0b9a/1ayer. tar

/workspace/BO0T-
INF/classes/info/ejava/examples/svc/docker/hello/DockerHelloExampleApp.class
/workspace/B00T-
INF/classes/info/ejava/examples/svc/docker/hello/controllers/ExceptionAdvice.class
/workspace/B00T-
INF/classes/info/ejava/examples/svc/docker/hello/controllers/HelloController.class

/workspace/BO0T-INF/1ib/classgraph-4.8.69.jar

/workspace/BO0T-INF/1ib/commons-1ang3-3.10.jar
/workspace/BOOT-INF/1ib/ejava-dto-util-6.0.1-SNAPSHOT. jar

12

/workspace/BO0T-INF/1ib/ejava-util-6.0.1-SNAPSHOT.jar
/workspace/BOOT-INF/1ib/ejava-web-util-6.0.1-SNAPSHOT. jar

As a reminder, when we built the Docker image with a Docker file and vanilla docker
commands —we ended up with an application layer with a single, Spring Boot executable JAR (with
a few KBytes of our code and 24.9 MB of dependency artifacts).

Review: Earlier Generic Docker Image Application Layer

$ tar tf ./a3651512f2a9241ae11ad8498df67b41943ea4943f4fae8f88bcb@b81168803d/1ayer . tar
application.jar

1s -1h ./a3651512f2a9241ae11ad8498df67b4f943ea4943f4fae8f88bcb0b81168803d/1ayer . tar
25M ./a365151212a92413e11ad8498df67b4f943ea4943f4fae8f88bcb@b81168803d/1ayer . tar

[1] "Pack to the Future: Cloud-Native Buildpacks on k8s", Spring One Platform, Oct 2019

13

https://www.youtube.com/watch?v=J2SXkmOo8iQ
https://www.youtube.com/watch?v=J2SXkmOo8iQ
https://www.youtube.com/watch?v=J2SXkmOo8iQ

Chapter 6. Layers

Dockerfile layers are an important concept when it comes to efficiency of storage and distribution.
Any images built on common base images or intermediate commands that produce the same result
do not have to be replicated within a repository. For example, 100 images all extending from the
same Open]DK 17 image do not need to have the OpenJDK 17 portions repeated.

To make it easier to view and analyze the layers of the Dockerfile — we can use a simple inspection
tool called dive. This shows us how the image is constructed, where we may have wasted space, and
potentially how to optimize. Since these images are brand new and based off production base
images—we will not see much wasted space at this time. However, it will help us better
understand the Docker image and how cloud features added to Spring Boot can help us.

Dive Not Required
(r) There is no need to install the dive tool to learn about layers and how Spring Boot
- provides support for layers. All necessary information to understand the topic is

contained in the following material.
Running dive on Docker Image

$ dive [imageId or name:tag]

With the image displayed, I find it helpful to:

hit [CNTL]+L if "Show Layer Changes is not yet selected"

hit [TAB] to switch to "Current Layer Contents" pane on the right

hit [CNTL]+U,R,M, and B to turn off all display except "Added”

hit [TAB] to switch back to "Layers” pane on the left

In the "Layers"” pane we can scroll up and down the layers to see which files where added because
of which ordered command in the Dockerfile. If all the layers look the same, make sure you are
only displaying the "Added" artifacts.

Dive within Docker

Or — of course — you could run dive within Docker to inspect a Docker image. This
requires that you map the image’s Docker socket to the host machine’s Docker
(r') socket with the -v syntax. This is likely OS-specific.

docker run --rm -it -v /var/run/docker.sock:/var/run/docker.sock
wagoodman/dive [imageld or name:tag]

6.1. Analyzing Basic Docker Image

In this first example, we are looking at the layers of the basic Dockerfile. Notice:

14

https://ostechnix.com/how-to-analyze-and-explore-the-contents-of-docker-images/

* a majority of the size was the result of extending the OpenJDK image. That space represents
content that a Dockerfile repository does not have to replicate.

* the last layer contains the 26 MB executable JAR. Because that technically contains our custom
application. This is content a Dockerfile repository has to replicate.

Analyzing Basic Docker Image

$ dive docker-hello-example:execjar

| ® Layers /oo ———— | Current Layer Contents |
Cmp Size Command Permission UID:GID Size Filetree
63 MB FROM 304748117a5a@cl application.jar]
988 kB [-z "$(apt-get indextargets)"]
745 B set -xe && echo '#!/bin/sh' > Jusr/sbin/policy-rc.d &
7 B mkdir -p /run/systemd && echo 'docker' > /run/systemd/co
36 MB apt-get update && apt-get install -y —--no-install-re
167 MB set -eux; ARCH="$(dpkg —-print-architecture)"; [

26 MB #(nop) COPY file:576755947381c122473841c08cc3454bd7f1lbcc]
| Layer Details |

(unavailable)
a3651512f2a9241aelladB498df67b4f943ea4943f4faeBfB88bcbObB81168

sha256:3c53295d85fea258ch2ceef882a4a608c003b0bf6638aef285b9f
4c0a%b4742b
Command:
#(nop) COPY file:576755947381c122473841c0@8cc3454bd7f1bcc6eeB999db78f
e8a3d2a81d6de in application.jar

| Image Details |

Total Image size: 293 MB
Potential wasted space: 3.0 MB
Image efficiency score: 99 %

Count Total Space Path
2 1.3 MB /var/cache/debconf/templates.dat
2 562 kB /var/cache/apt/pkgcache.bin
2 425 kB /var/cache/apt/srcpkgcache.bin
2 485 kB /var/log/dpkg.log
2 212 kB /var/lib/dpkg/status
~C Quit | Tab Switch view | “F Filter [BlTRETTE SN ENGESH] ~“A Show aggregated changes

6.2. Analyzing Basic Buildpack Image

If we look at the Docker image built with buildpack, through the Maven plugin, we will see the
same 26MB exploded as separate files towards the end of the image. From a layering
perspective — the exploded structure has not saved us anything.

Analyzing Buildpack Image

$ dive docker-hello-example:6.0.1-SNAPSHOT

15

| Layers | e Current Layer Contents
Cmp Size Command
63 MB FROM 304748117a5a@cl
988 kB
745 B
7B
225 B
28 MB
398 kB
2.3 MB
6.7 MB
214 B
140 MB
.8 MB
.2 MB
.2 MB
.2 MB
.8 MB

| Layer Details |

Tags: (unavailable)

Id: 6e2b5eb3b4b11627cce2ca’cBaeb7de6Ba7a54b56b15eadd43edaldd2blf
@b9a

Digest: sha256:2c6cc7@a3550435f3eabb90c6eBB95410dc45f13b%efB75db16df
1f5c7abed38

Command:

~C Quit | Tab Switch view | “F Filter | Space Collapse dir | “Space Collapse all dir [/ .W.LGELE “R Removed | “M Modified | “U Unmodified

However, now that we have it exploded — we will have the option to break it into further layers.

16

Chapter 7. Adding Fine-grain Layering

Having all 26 MB of our Spring Boot application in a single layer can be wasteful — especially if we
push new images to a repository many times during development. We end up with 26MB.versionl,
26MB.version2, etc. when each push is more than likely a few modifications of class files within the
application and a complete change in library dependencies not as common.

7.1. Configure Layer-ready Executable JAR

The Spring Boot plugin and buildpack provide support for creating finer-grain layers from the
executable JAR by enabling the layers plugin configuration property.

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<layers>
<enabled>true</enabled>
</layers>
</confiquration>
</plugin>

7.2. Building and Inspecting Layer-ready Executable
JAR

If we rebuild the executable JAR with the layered option, an extra wrapper is added to the
executable JAR file that can be activated with the -Djarmode=1ayeredtools option to the java -jar
command. This option takes one of two arguments: list or extract.

Inspecting Layer-ready Executable JAR
$ mvn clean package spring-boot:repackage -Dlayered=true -DskipTests @

$ java -Djarmode=layertools -jar target/docker-hello-example-6.0.1-SNAPSHOT-
bootexec.jar
Usage:

java -Djarmode=layertools -jar docker-hello-example-6.0.1-SNAPSHOT-bootexec.jar

Available commands:
list List layers from the jar that can be extracted

extract Extracts layers from the jar for image creation
help Help about any command

@ -Dlayered=true activates layering within the Maven pom.xml

17

7.3. Default Executable JAR Layers

Spring Boot automatically configures four (4) layers by default: (released) dependencies, spring-
boot-loader, snapshot-dependencies, and application. These layers are ordered from most stable
(dependencies) to least stable (application). We have the ability to change the layers —but I won’t
go into that here.

Default Executable JAR Layers

$ java -Djarmode=layertools -jar target/docker-hello-example-6.0.1-SNAPSHOT-
bootexec.jar list

dependencies

spring-boot-loader

snapshot-dependencies

application

18

Chapter 8. Layered Buildpack Image

With the layers configuration property enabled, the next build will result in a layered image posted
to the local Docker repository.

$ mvn package spring-boot:build-image -Dlayered=true -DskipTests

Successfully built image 'docker.io/library/docker-hello-example:6.0.1-SNAPSHOT'

8.1. Dependency Layer

The dependency layer contains all the released dependencies. This happens to make up most of the
26MB we had for the executable JAR. This 26MB does not need to be replicated in the image
repository if consistent with follow-on publications of our image.

e Layers /——+«— ————— | Current Layer Contents |

Cmp Size Command
988 kB

745 B 1
7B

225 B

20 MB

398 kB

2.3 MB

6.7 MB

214 B

| Layer Details |

Tags: [(CLEVEELECY)

Id: 637e5ae57529199184146318080e48458c1cd529b21a1817f5219bb9f9ee
edd2

Digest: sha256:168203deld22c94fd852702bc9a6f820389bb933c57d3fac5d16¢
85d5f884bc9

Command :

~C Quit [Tab Switch view | “F Filter QIS BV il EE0] “A Show aggregated changes

Figure 4. Dependency Layer

8.2. Snapshot Layer

The snapshot layer contains dependency artifacts that have not been released. This is an indication
that the artifact is slightly more stable than our application code but not as stable as the released
dependencies.

19

elayers ———— | Current Layer Contents |
Cmp Size Command workspace]

988 kB BOOT-INF
745 B
7B
225 B
280 MB
398 kB
2.3 MB
[]
214 B
140 MB
.8 MB
.2 MB
.2 MB
.2 MB
.8 MB
10 B

| Layer Details |

Tags: (unavailable)

Id: 9e2e430f58bccded@3fadBe57b1d18b76659155ba3bb25f5cfac3d51982d
587e

Digest: sha256:39b38@3b9fde2cf8c7ef5c07b90d15c889729e97cc9d49a58d2c0
5e441326985

Command:

~C Quit [Tab Switch view [“F Filter BT B[S0 ~“A Show aggregated changes

Figure 5. Snapshot Dependency Layer

8.3. Application Layer

The application layer contains the code for the local module —which should be the most volatile.
Notice that in this example, the application code is 12KB out of the total 26MB for the executable
JAR. If we change our application code and redeploy the image somewhere—only this small
portion of the code needs to change.

e Layers /b———————— | Current Layer Contents |
Cmp Size Command

988 kB
745 B

78
225 B
20 MB
398 kB
2.3 MB
6.7 MB
214 B
148 MB

MB

MB

MB

| Layer Details |

(unavailable)
f96a1fa@2b2382117619f87a%4be5d16af966f59a22b81909837018Fc12

Digest: sha256:faebl113e761a933e5b83f86b409ded265a6ccac34b48430ac9789
4f7f5040051
Command :

~C Quit [Tab Switch view | *F Filter B B{ilTEVE S EGLEES] ~A Show aggregated changes

Figure 6. Application Layer

8.4. Review: Single Layer Application

If you remember ... before we added multiple layers, all the library stable JARs and semi-stable
SNAPSHOT dependencies were in the same layers as our potentially changing application code. We
now have them in separate layers.

20

Review: Single Layer Application

BOOT-INF

21

Chapter 9. Layered Docker Image

Since buildpack may not be for everyone, Spring Boot provides a means for standard Docker users
to create layered images with a standard Dockerfile and standard docker commands. The following
example is based on the Example Dockerfile on the Spring Boot features page.

9.1. Example Layered Dockerfile

The Dockerfile is written in two parts: builder and image construction. The first, builder half of the
file copies in the executable JAR and extracts the layer directories into a temporary portion of the
image.

The second, construction half builds the final image by extending off what could be an independent
parent image and the products of the builder phase. Notice how the four (4) layers are copied in
separately - forming distinct boundaries.

Example Layered Dockerfile

FROM openjdk:17.0.2 as builder @

WORKDIR application

ARG JAR_FILE=target/*-bootexec.jar

COPY ${JAR_FILE} application.jar

RUN java -Djarmode=layertools -jar application.jar extract

FROM openjdk:17.0.2 @

WORKDIR application

COPY --from=builder application/dependencies/ ./

COPY --from=builder application/spring-boot-loader/ ./

COPY --from=builder application/snapshot-dependencies/ ./

COPY --from=builder application/application/ ./

ENTRYPOINT ["java", "org.springframework.boot.loader.JarLauncher"]

® commands used to setup building the image

@ commands used to build the image

Example Layered Dockerfile Build

$ docker build . -f Dockerfile.layered -t docker-hello-example:layered
Sending build context to Docker daemon 26.1MB

9.2. Example Build

The following shows the output of building our example using the docker build command and the
Dockerfile above. Notice:

* that it copies in the executableJAR and extracts the layers into the temporary image.

* how it is building separate, distinct layers by using separate COPY commands for each layer

22

https://docs.spring.io/spring-boot/docs/2.3.2.RELEASE/reference/html/spring-boot-features.html#writing-the-dockerfile

directory.

Example Docker Image Construction Phase

=> [stage-1 2/6] WORKDIR application

=> [builder 3/4] COPY target/*-bootexec.jar application.jar

=> [builder 4/4] RUN java -Djarmode=layertools -jar application.jar extract
=> [stage-1 3/6] COPY --from=builder application/dependencies/ ./

=> [stage-1 4/6] COPY --from=builder application/spring-boot-loader/ ./

=> [stage-1 5/6] COPY --from=builder application/snapshot-dependencies/ ./
=> [stage-1 6/6] COPY --from=builder application/application/ ./

=> => naming to docker.io/library/docker-hello-example:layered

9.3. Dependency Layer

The dependency layer —like with the buildpack version — contains 26MB of the released JARs. This
makes up the bulk of what was in our executable JAR.

| Layers | o Current Layer Contents

Cmp Size Command application
63 MB FROM 30474@117a5a@cl

988 kB [-z "$(apt-get indextargets)"] L
745 B set -xe && echo '#!/bin/sh' > /usr/sbin/policy-rc.d &
7 B mkdir -p /run/systemd &% echo 'docker' > /run/systemd/co
36 MB apt-get update && apt-get install -y --no-install-re
167 MB set -eux; ARCH="%(dpkg --print-architecture)"; c
® B #(nop) WORKDIR /application
235 kB #(nop) COPY dir:637c983b7f385801c12135959479cf2d23d3dc52
28 kB #(nop) COPY dir:f@97ea2816ffbe677a8461015828252b889f5199
12 kB #(nop) COPY dir:90786121f1e4f876210f835651a4173659¢el1fc3a

| Layer Details |

(unavailable)
4edB2f32f2aB4424b21fc49be6a®3442e4904b1d4914e3a0dbaab23871fc

Digest: sha256:laefaB654da53abdaf953389945141416130981695d6e64405e2e
1c542eeaba5

Command :

#(nop) COPY dir:ca3f1f8@ba®3cPafd675d3905cfBaf20e7f5c977cad46f80a492a
blad35f923d3 in ./

| Image Details |
Total Image size: 293 MB

Potential wasted space: 3.0 MB
Image efficiency score: 99 %

Count Total Space Path
2 1.3 MB /var/cache/debconf/templates.dat
~C Quit | Tab Switch view | “F Filter | Space Collapse dir | “Space Collapse all dir [V .CLEGE| “R Removed | “M Modified | “U Unmodified

9.4. Snapshot Layer

The snapshot layer contains dependencies that have not yet been released. These are believed to be
more stable than our application code but less stable than the released dependencies.

23

| Layers |
Cmp Size
63 MB

988 kB

745 B

78

36 MB

167 MB

0B

Command

FROM 384740117a5a0@cl

[-z "$(apt-get indextargets)"]

set -xe && echo '#!/bin/sh' > /fusr/sbin/policy-rc.d &
mkdir -p /run/systemd && echo 'docker' > /run/systemd/co
apt-get update && apt-get install -y --no-install-re
set -eux; ARCH="%$(dpkg —-print-architecture)"; [+
#(nop) WORKDIR /application

26 MB #(nop) COPY dir:ca3f1f8@8ba@3c@afd675d3905cfBaf20e7f5c977
235 kB #(nop) COPY 37¢983b71385801c12135959479cf2d23d3dc52

28 kB #(nop) COPY dir:f097ea2816ffbe677a84610f5828252b8895F99
12 kB #(nop) COPY dir:90786121f1e4f876210f835651a4173659%¢e1fc3a

| Layer Details |

(unavailable)
cf3ebfc@7b21e824e6eb014c960bad0699d12151cB8917d27339ccb117e68

Digest: sha256:d@be55c7db397d797b6ae19bd34612978f7bc9Ib7a90bebfdfB83fe
3199c78b891

Command :

#(nop) COPY dir:f@97ea2816ffbe677a8461015828252b889f5f991ad7f3ead9el
a@f4475bb951 in ./

| Image Details |

Total Image size: 293 MB
Potential wasted space: 3.2 MB
Image efficiency score: 99 %
Count Total Space Path

1.3 MB /var/cache/debconf/templates.dat
~C Quit | Tab Switch view | “F Filter | Space Collapse dir

~Space Collapse all dir

o Current Layer Contents
application|
BOOT-INF

L lib

~A Added

~R Removed | “M Modified | “U Unmodified

9.5. Application Layer

The application layer contains our custom application code. This layer is thought to be the most

volatile and is in the top-most layer.

e Layers
Cmp Size
63 MB

988 kB

745 B

7B

36 MB

167 MB

2B

26 MB

Command

FROM 30474@117a5a@cl

[-z "$(apt-get indextargets)"]

set -xe && echo '#!/bin/sh' > /fusr/sbin/policy-rc.d &

mkdir -p /run/systemd &% echo 'docker' > /run/systemd/co

apt-get update && apt-get install -y --no-install-re

set -eux; ARCH="$(dpkg —-print-architecture)"; [

#(nop) WORKDIR /application

#(nop) COPY dir:ca3f1f8@ba@3c@afd675d3905cfB8af2@e7f5c977
235 kB #(nop) COPY di 37c983b71385801c12135959479cf2d23d3dc52
28 kB #(nop) COPY dir:f@97ea2816ffbe677aB4610f5828252bB89f5f99

| Layer Details |

(unavailable)
51b81c3833813a79¢10198180cB8c5c4b42693f66a79d428ad72a62583155

Tags:
Id:
6217
Digest: sha256:43232323dc1d908b23318b24298e363d1187338b4bbd1ba9f1840
618acalecbb

Command :

#(nop) COPY dir:90786121f1e4f8762101835651a4173659e1fc3a798e60f7df42
8d9ed4c@356a in ./

| Image Details |

Total Image size: 293 MB
Potential wasted space: 3.0 MB
Image efficiency score: 99 %
Count Total Space Path

1.3 MB /var/cache/debconf/templates.dat
~C Quit | Tab Switch view | “F Filter [l liiEN e CniEs

24

| Current Layer Contents |

BOOT-INF

META-INF
IFEST.MF

ntainer

~A Show aggregated changes

Chapter 10. Summary

In this module we learned:

* Docker is a ecosystem of concepts, tools, and standards
* Docker —the company — provides an implementation of those concepts, tools, and standards
* Docker images can be created using different tools and technologies
o the docker build command uses a Dockerfile
o buildpack uses knowledgeable inspection of the codebase
* Docker images have ordered layers — from common operating system to custom application

* buildpack layers are rigorous enough that they can be rebased upon freshly patched
images — making hundreds to millions of image patches feasible within a short amount of time

¢ intelligent separation of code into layers and proper ordering can lead to storage and
complexity savings

» Spring Boot provides a means to separate the executable JAR into layers that match certain
criteria

25

	Docker Images
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Containers
	2.1. Container Deployments

	Chapter 3. Docker Ecosystem
	3.1. Container Builders
	3.2. Container Runtimes

	Chapter 4. Docker Images
	Chapter 5. Basic Docker Image
	5.1. Basic Dockerfile
	5.2. Basic Docker Image Build Output
	5.3. Local Docker Registry
	5.4. Running Docker Image
	5.5. Docker Run Command with Arguments
	5.6. Running Docker Image
	5.7. Using the Docker Image
	5.8. Docker Image is Layered
	5.9. Application Layer
	5.10. Spring Boot Plugin
	5.11. Building Docker Image using Buildpack
	5.12. Buildpack Image in Local Docker Repository
	5.13. Buildpack Image Execution
	5.14. Inspecting Buildpack Image

	Chapter 6. Layers
	6.1. Analyzing Basic Docker Image
	6.2. Analyzing Basic Buildpack Image

	Chapter 7. Adding Fine-grain Layering
	7.1. Configure Layer-ready Executable JAR
	7.2. Building and Inspecting Layer-ready Executable JAR
	7.3. Default Executable JAR Layers

	Chapter 8. Layered Buildpack Image
	8.1. Dependency Layer
	8.2. Snapshot Layer
	8.3. Application Layer
	8.4. Review: Single Layer Application

	Chapter 9. Layered Docker Image
	9.1. Example Layered Dockerfile
	9.2. Example Build
	9.3. Dependency Layer
	9.4. Snapshot Layer
	9.5. Application Layer

	Chapter 10. Summary

