Configuration Properties

jim stafford

Fall 2022 v2022-09-10: Built: 2022-12-07 06:12 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Mapping properties to @ConfigurationProperties class
2.1. Mapped Java Class
2.2. Injection Point
2.3. Initial Error
2.4. Registering the @ConfigurationProperties class
2.5. Result
3. Metadata
3.1. Spring Configuration Metadata
3.2. Spring Configuration Processor
3.3.Javadoc Supported
3.4. Rebuild Module
3.5. IDE Property Help
4. Constructor Binding
4.1. Property Names Bound to Constructor Parameter Names
4.2. Constructor Parameter Name Mismatch
5. Validation
5.1. Validation Annotations
5.2. Validation Error
6. Boilerplate JavaBean Methods
6.1. Generating Boilerplate Methods with Lombok
6.2. Visible Generated Constructs
6.3. Lombok Build Dependency
6.4. Example Output
7. Relaxed Binding
7.1. Relaxed Binding Example JavaBean
7.2. Relaxed Binding Example Properties
7.3. Relaxed Binding Example Output
8. Nested Properties
8.1. Nested Properties JavaBean Mapping
8.2. Nested Properties Host JavaBean Mapping
8.3. Nested Properties Output
9. Property Arrays
9.1. Property Arrays Definition
9.2. Property Arrays Output
10. System Properties

© 00 00 J 9 9 O B W wNdDNDR R e

NN NN DNDNNDNIDNR B R B B BB R opRm o, | ol |) e,
G b W W N R B 2 O O O © 6 O U b b WNNFLR O O

10.1. System Properties Usage

11. @ConfigurationProperties Class Reuse
11.1. @ConfigurationProperties Class Reuse Mapping
11.2. @ConfigurationProperties @Bean Factory
11.3. Injecting ownerProps
11.4. Injection Matching
11.5. Ambiguous Injection
11.6. Injection @Qualifier
11.7. way1: Create Custom @Qualifier Annotation
11.8. way2: @Bean Factory Method Name as Qualifier
11.9. way3: Match @Bean Factory Method Name
11.10. Ambiguous Injection Summary

12. Summary

25
27
27
28
28
29
29
30
30
31
31
32
33

Chapter 1. Introduction

In the previous chapter we mapped properties from different sources and then mapped them
directly into individual component Java class attributes. That showed a lot of power but had at least
one flaw—each component would define its own injection of a property. If we changed the
structure of a property, we would have many places to update and some of that might not be within
our code base.

In this chapter we are going to continue to leverage the same property source(s) as before but
remove the individual configuration properties entirely from the component classes and
encapsulate them within a configuration class that gets instantiated, populated, and injected into
the component at runtime.

We will also explore adding validation of properties and leveraging tooling to automatically
generate boilerplate JavaBean constructs.

1.1. Goals

The student will learn to:

* map a Java @ConfigurationProperties class to properties

define validation rules for property values
* leverage tooling to generate boilerplate code for JavaBean classes
* solve more complex property mapping scenarios

* solve injection mapping or ambiguity

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1. map a Java @ConfigurationProperties class to a group of properties
o generate property metadata — used by IDEs for property editors
create read-only @ConfigurationProperties class using @ConstructorBinding
define Jakarta EE Java validation rule for property and have validated at runtime
generate boilerplate JavaBean methods using Lombok library
use relaxed binding to map between JavaBean and property syntax
map nested properties to a @ConfigurationProperties class
map array properties to a @ConfigurationProperties class

reuse @ConfigurationProperties class to map multiple property trees

© ® N o g s~ w N

use @Qualifier annotation and other techniques to map or disambiguate an injection

Chapter 2. Mapping properties to
@ConfigurationProperties class

Starting off simple, we define a property (app.config.car.name) in application.properties to hold
the name of a car.

application.properties
app.config.car.name=Suburban

2.1. Mapped Java Class

At this point we now want to create a Java class to be instantiated and be assigned the value(s) from
the various property sources—application.properties in this case, but as we have seen from
earlier lectures properties can come from many places. The class follows standard JavaBean
characteristics

» default constructor to instantiate the class in a default state

» "setter"/"getter" methods to set and get the state of the instance

A "toString()" method was also added to self-describe the state of the instance.

import org.springframework.boot.context.properties.ConfigurationProperties;

("app.config.car") @
public class CarProperties { @
private String name;

//default ctor @

public String getName() {
return name;

}

public void setName(String name) {
this.name = name; @

}

public String toString() {
return "CarProperties{name="

n

+ name + "\'}";

}

@ class is a standard Java bean with one property

@ class designed for us to use its default constructor and a setter() to assign value(s)

https://en.wikipedia.org/wiki/JavaBeans

® class annotated with @ConfigurationProperties to identify that is mapped to properties and the
property prefix that pertains to this class

2.2. Injection Point

We can have Spring instantiate the bean, set the state, and inject that into a component at runtime
and have the state of the bean accessible to the component.

public class AppCommand implements CommandLineRunner {
private CarProperties carProperties; @

public void run(String... args) throws Exception {
System.out.println("carProperties=" + carProperties); @

® Our @ConfigurationProperties instance is being injected into a @Component class using FIELD
injection

@ Simple print statement of bean’s toString() result

2.3. Initial Error

However, if we build and run our application at this point, our injection will fail because Spring
was not able to locate what it needed to complete the injection.

hkkkhkkhhkhhkhhkhhhhkhhhrhkkrkkkx

APPLICATION FAILED TO START

hkhhrkhhrhrhrhrhrhhhhhhhrhkrrsxk

Description:

Field carProperties in info.ejava.examples.app.config.configproperties.AppCommand
required a bean

of type 'info.ejava.examples.app.config.configproperties.properties.CarProperties’
that could

not be found.

The injection point has the following annotations:
- @org.springframework.beans.factory.annotation.Autowired(required=true)

Action:
Consider defining a bean of type

"info.ejava.examples.app.config.configproperties.properties.CarProperties’
in your configuration. @

@ Error message indicates that Spring is not seeing our @ConfigurationProperties class

2.4. Registering the @ConfigurationProperties class

We currently have a similar problem that we had when we implemented our first @Configuration
and @Component classes—the bean is not being scanned. Even though we have our
@ConfigurationProperties class is in the same basic classpath as the @Configuration and @Component
classes — we need a little more to have it processed by Spring. There are several ways to do that:

src
‘-- main

|-- java

| '-- info

| ‘-- ejava

| ‘-~ examples

I ‘-~ app

| ‘-- config

| ‘-- configproperties

| |-- AppCommand.java

| |-- ConfigurationPropertiesApp.java

| ‘-- properties

| ‘-~ CarProperties.java

‘-~ resources

‘-- application.properties

2.4.1. way 1 - Register Class as a @Component

Our package is being scanned by Spring for components, so if we add a @Component annotation the
@ConfigurationProperties class will be automatically picked up.

package info.ejava.examples.app.config.configproperties.properties;

("app.config.car") @
public class CarProperties {

@ causes Spring to process the bean and annotation as part of component classpath scanning

* benefits: simple

» drawbacks: harder to override when configuration class and component class are in the same
Java class package tree

2.4.2. way 2 - Explicitly Register Class

Explicitly register the class using @EnableConfigurationProperties annotation on a @Configuration
class (such as the @SpringBootApplication class)

https://www.baeldung.com/spring-enable-config-properties

import info.ejava.examples.app.config.configproperties.properties.CarProperties;
import org.springframework.boot.context.properties.ConfigurationPropertiesScan;

(CarProperties.class) @
public class ConfigurationPropertiesApp {

@ targets a specific @ConfigurationProperties class to process

* benefits: @Configuration class has explicit control over which configuration properties classes to
activate

» drawbacks: application could be coupled with the details if where configurations come from

2.4.3. way 3 - Enable Package Scanning

Enable package scanning for @ConfigurationProperties classes with the
@ConfigurationPropertiesScan annotation

@
public class ConfigurationPropertiesApp {

@ allows a generalized scan to be defined that is separate for configurations

* benefits: easy to add more configuration classes without changing application

» drawbacks: generalized scan may accidentally pick up an unwanted configuration

2.4.4. way 4 - Use @Bean factory

Create a @Bean factory method in a @Configuration class for the type .

public class ConfigurationPropertiesApp {

("app.config.car") @
public CarProperties carProperties() {
return new CarProperties();

}

@ gives more control over the runtime mapping of the bean to the @Configuration class

* benefits: decouples the @ConfigurationProperties class from the specific property prefix used to
populate it. This allows for reuse of the same @ConfigurationProperties class for multiple
prefixes

» drawbacks: implementation spread out between the @ConfigurationProperties and
@Configuration classes. It also prohibits the use of read-only instances since the returned object

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/properties/ConfigurationPropertiesScan.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/properties/ConfigurationPropertiesScan.html

is not yet populated

For our solution for this example, I am going to use @ConfigurationPropertiesScan ("way3") and drop
multiple @ConfigurationProperties classes into the same classpath and have them automatically
scanned for.

2.5. Result

Having things properly in place, we get the instantiated and initialized CarProperties
@ConfigurationProperties class injected into out component(s). Our example AppCommand component
simply prints the toString() result of the instance and we see the property we set in the
applications.property file.

Property Definition

application.properties
app.config.car.name=Suburban

Injected @Component Processing the Bean

public class AppCommand implements CommandLineRunner {
private CarProperties carProperties;

public void run(String... args) throws Exception {
System.out.println("carProperties” + carProperties);

Produced Output

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

carProperties=CarProperties{name="Suburban'}

Chapter 3. Metadata

IDEs have support for linking Java properties to their @ConfigurationProperty class information.

#@pplication.properties
app. config

p app.config.car.name (Name of car with no set maximum size) String app.config. car

P app.config.company.zip—code String String

Prass < to insert, -+ to replace : . . .
— Name of car with no set maximum size

& appconfig-configproperties-example
Figure 1. IDE Configuration Property Support
This allows the property editor to know:

* there is a property app.config.carname

* any provided Javadoc

7 Spring Configuration Metadata and IDE support is very helpful when faced with
- configuring dozens of components with hundreds of properties (or more!)

3.1. Spring Configuration Metadata

IDEs rely on a JSON-formatted metadata file located in META-INF/spring-configuration-
metadata.json to provide that information.

META-INF/spring-configuration-metadata.json Snippet

"properties": [

{
"name": "app.config.car.name",
"type": "java.lang.String",
"description”: "Name of car with no set maximum size",
"sourceType":
"info.ejava.examples.app.config.configproperties.properties.CarProperties"”
}

We can author it manually. However, there are ways to automate this.

3.2. Spring Configuration Processor

To have Maven automatically generate the JSON metadata file, add the following dependency to the
project to have additional artifacts generated during Java compilation. The Java compiler will
inspect and recognize a type of class inside the dependency and call it to perform additional
processing. Make it optional=true since it is only needed during compilation and not at runtime.

<!-- pom.xml dependencies -->

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId> @
<optional>true</optional> @

</dependency>

@ dependency will generate additional artifacts during compilation

@ dependency not required at runtime and can be eliminated from dependents

Dependencies labelled optional=true or scope=provided are not included in the
O Spring Boot executable JAR or transitive dependencies in downstream
deployments without further configuration by downstream dependents.

3.3. Javadoc Supported
As noted earlier, the metadata also supports documentation extracted from Javadoc comments. To

demonstrate this, I will add some simple Javadoc to our example property.

("app.config.car")

public class CarProperties {
/**

* Name of car with no set maximum size @
*/
private String name;

@ Javadoc information is extracted from the class and placed in the property metadata

3.4. Rebuild Module

Rebuilding the module with Maven and reloading the module within the IDE should give the IDE
additional information it needs to help fill out the properties file.

Metadata File Created During Compilation

$ mvn clean compile

Produced Metadata File in target/classes Tree

target/classes/META-INF/
‘-- spring-configuration-metadata.json

Produced Metadata File Contents

{

"groups": [

"name": "app.config.car",

"type":
"info.ejava.examples.app.config.configproperties.properties.CarProperties”,
"sourceType":
"info.ejava.examples.app.config.configproperties.properties.CarProperties"”
}
1,
"properties": [
{
"name": "app.config.car.name",
“type": "java.lang.String",
"description”: "Name of car with no set maximum size",
"sourceType":
"info.ejava.examples.app.config.configproperties.properties.CarProperties"
}
1
"hints": []

}

3.5. IDE Property Help

If your IDE supports Spring Boot and property metadata, the property editor will offer help filling
out properties.

#@pplication.properties

app. config
p app.config.car.name (Name of car with no set maximum size) String -
app.config.car.name
p app.config.company.zip-code String String

Prass < to insert, -+ to replace : . . .
— Name of car with no set maximum size

& appconfig-configproperties-example

o Intelli] free Community Edition does not support this feature. The following link
provides a comparison with the for-cost Ultimate Edition.

https://www.jetbrains.com/idea/features/editions_comparison_matrix.html

Chapter 4. Constructor Binding

The previous example was a good start. However, I want to create a slight improvement at this
point with a similar example and make the JavaBean read-only. This better depicts the contract we
have with properties. They are read-only.

To accomplish a read-only JavaBean, we should remove the setter(s), create a custom constructor
that will initialize the attributes at instantiation time, and ideally declare the attributes as final to
enforce that they get initialized during construction and never changed.

The only requirement Spring places on us is to add a @ConstructorBinding annotation to the class or
constructor method when using this approach.

Constructor Binding Example

import org.springframework.boot.context.properties.ConstructorBinding;

("app.config.boat")
public class BoatProperties {
private final String name; ®

@
public BoatProperties(String name) {
this.name = name;

}

//no setter method(s) @

public String getName() {
return name;

}

public String toString() {
return "BoatProperties{name="

+ name + "\'}";

}

@ remove setter methods to better advertise the read-only contract of the bean
@ add custom constructor and annotate the class or constructor with @ConstructorBinding

® make attributes final to better enforce the read-only nature of the bean

(r') @ConstructorBinding annotation required on the constructor method when more
- than one constructor is supplied.

4.1. Property Names Bound to Constructor Parameter
Names

When using constructor binding, we no longer have the name of the setter method(s) to help map

10

the properties. The parameter name(s) of the constructor are used instead to resolve the property
values.

In the following example, the property app.config.boat.name matches the constructor parameter
name. The result is that we get the output we expect.

application.properties
app.config.boat.name=Maxum

Result of Parameter Name Matching Property Name

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

boatProperties=BoatProperties{name="Maxum'}

4.2. Constructor Parameter Name Mismatch

If we change the constructor parameter name to not match the property name, we will get a null
for the property.

("app.config.boat")
public class BoatProperties {
private final String name;

public BoatProperties(String nameX) { @
this.name = nameX;

}

@ constructor argument name has been changed to not match the property name from
application.properties

Result of Parameter Name not Matching Property Name
$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar
boatProperties=BoatProperties{name="null'}
We will discuss relaxed binding soon and see that some syntactical differences
o between the property name and JavaBean property name are accounted for

during @ConfigurationProperties binding. However, this was a clear case of a name
mis-match that will not be mapped.

11

Chapter 5. Validation

The error in the last example would have occurred whether we used constructor or setter-based
binding. We would have had a possibly vague problem if the property was needed by the
application. We can help detect invalid property values for both the setter and constructor
approaches by leveraging validation.

Java validation is a JavaEE/ Jakarta EE standard API for expressing validation for JavaBeans. It
allows us to express constraints on JavaBeans to help further modularize objects within our
application.

To add validation to our application, we start by adding the Spring Boot validation starter (spring-
boot-starter-validation) to our pom.xml.

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>
</dependency>

This will bring in three (3) dependencies

» jakarta.validation-api - this is the validation API and is required to compile the module
 hibernate-validator - this is a validation implementation

* tomcat-embed-el - this is required when expressing validations using regular expressions with
@Pattern annotation

5.1. Validation Annotations

We trigger Spring to validate our JavaBean when instantiated by the container by adding the
Spring @Validated annotation to the class. We further define the Java attribute with the Jakarta EE
@NotNull constraint to report an error if the property is ever null.

@ConfigurationProperties JavaBean with Validation

import org.springframework.validation.annotation.Validated;
import javax.validation.constraints.NotNull;

("app.config.boat")
@

public class BoatProperties {

@

private final String name;

public BoatProperties(String nameX) {
this.name = nameX;

12

https://beanvalidation.org/
https://jakarta.ee
https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
https://owasp.org/www-project-cheat-sheets/cheatsheets/Bean_Validation_Cheat_Sheet.html
https://owasp.org/www-project-cheat-sheets/cheatsheets/Bean_Validation_Cheat_Sheet.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/annotation/Validated.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/annotation/Validated.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/annotation/Validated.html
https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.html#builtinconstraints-notnull
https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.html#builtinconstraints-notnull

@ The Spring @Validated annotation tells Spring to validate instances of this class

@ The Jakarta EE @NotNull annotation tells the validator this field is not allowed to be null

You can locate other validation constraints in the Validation API and also extend
o the API to provide more customized validations using the Validation Spec,
Hibernate Validator Documentation, or various web searches.

5.2. Validation Error

The error produced is caught by Spring Boot and turned into a helpful description of the problem
clearly stating there is a problem with one of the properties specified (When actually it was a
problem with the way the JavaBean class was implemented)

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

kkkkkkhkhkkhhkkhkhkkhkkhkhkhkhhkkrkkkx

APPLICATION FAILED TO START

kkkkkkhhkhhkkhhkkhhkhkhhhkhhrkrkkkx

Description:

Binding to target org.springframework.boot.context.properties.bind.BindException:
Failed to bind properties under 'app.config.boat' to
info.ejava.examples.app.config.configproperties.properties.BoatProperties failed:

Property: app.config.boat.name
Value: null
Reason: must not be null

Action:
Update your application's configuration
Notice how the error message output by Spring Boot automatically knew what a
validation error was and that the invalid property mapped to a specific property
o name. That is an example of Spring Boot’s FailureAnalyzer framework in

action —which aims to make meaningful messages out of what would otherwise
be a clunky stack trace.

13

https://docs.jboss.org/hibernate/beanvalidation/spec/2.0/api/javax/validation/constraints/package-summary.html
https://jakarta.ee/specifications/bean-validation/2.0/bean-validation_2.0.html
http://hibernate.org/validator/documentation/getting-started/
http://hibernate.org/validator/documentation/getting-started/
https://www.baeldung.com/spring-boot-failure-analyzer

Chapter 6. Boilerplate JavaBean Methods

Before our implementations gets more complicated, we need to address a simplification we can
make to our JavaBean source code which will make all future JavaBean implementations incredibly
easy.

Notice all the boilerplate constructor, getter/setter, toString(), etc. methods within our earlier
JavaBean classes? These methods are primarily based off the attributes of the class. They are
commonly implemented by IDEs during development but then become part of the overall code base
that has to be maintained over the lifetime of the class. This will only get worse as we add
additional attributes to the class when our code gets more complex.

("app.config.boat")
public class BoatProperties {

private final String name;

public BoatProperties(String name) { //boilerplate @
this.name = name;

}

public String getName() { //boilerplate @
return name;

}

public String toString() { //boilerplate @
return "BoatProperties{name='" + name + "\'}";

}

@ Many boilerplate methods in source code — likely generated by IDE

6.1. Generating Boilerplate Methods with Lombok

These boilerplate methods can be automatically provided for us at compilation using the Lombok
library. Lombok is not unique to Spring Boot but has been adopted into Spring Boot’s overall
opinionated approach to developing software and has been integrated into the popular Java IDEs.

I will introduce various Lombok features during later portions of the course and start with a simple
case here where all defaults for a JavaBean are desired. The simple Lombok @Data annotation
intelligently inspects the JavaBean class with just an attribute and supplies boilerplate constructs
commonly supplied by the IDE:

e constructor to initialize attributes

14

https://projectlombok.org/

* getter
* toString()
* hashCode() and equals()

A setter was not defined by Lombok because the name attribute is declared final.

Java Bean using Lombok

import lombok.Data;

@ConfigurationProperties("app.config.company")

@ConstructorBinding

@Data @

@Validated

public class CompanyProperties {
@NotNull
private final String name;
//constructor @
//getter @
//toString @
//hashCode and equals @

® Lombok @Data annotation generated constructor, getter(/setter), toString, hashCode, and equals

6.2. Visible Generated Constructs

The additional methods can be identified in a class structure view of an IDE or using Java

disassembler (javap) command

Example IDE Class Structure View

€ = CompanyProperties 1 package info.ejava.examples.app.config.configproperties.properties;
m W CompanyProperties(String) 2
e R 3 import lombok.Data;
getName(): String | A . .))
) 4 import org.springframework.boot.context.properties.ConfigurationProperties;
m & equals(Object): boolean T Object . . . L
‘" o 5 import org.springframework.boot.context.properties.ConstructorBinding;
canEqual(Object): boolean 6 import org.springframework.validation.annotation.Validated;

m W hashCode(): int TObject 7

Im & toString(): String T Object 8 import javax.validation.constraints.NotMull;

% & name: String 9
18 /4t This class provides a example of ConfigurationProperties class that uses ...%/
14 @ConfigurationProperties("app.confill. company")
15 @ConstructorBinding
16 @bata
17 @validated
18 Y& public class CompanyProperties {
19 @otNull
20 N private final String name;
21 }

o You may need to locate a compiler option within your IDE properties to make the

code generation within your IDE.

15

Jjavap Class Structure Output

$ javap -cp target/classes
info.ejava.examples.app.config.configproperties.properties.CompanyProperties
Compiled from "CompanyProperties.java"
public class
info.ejava.examples.app.config.configproperties.properties.CompanyProperties {

public
info.ejava.examples.app.config.configproperties.properties.CompanyProperties(java.lang
.String);

public java.lang.String getName();

public boolean equals(java.lang.Object);

protected boolean canEqual(java.lang.0Object);

public int hashCode();

public java.lang.String toString();

6.3. Lombok Build Dependency

The Lombok annotations are defined with RetentionPolicy.SOURCE. That means they are discarded
by the compiler and not available at runtime.

Lombok Annotations are only used at Compile-time

(ElementType.TYPE)
(RetentionPolicy.SOURCE)
public Data {

That permits us to declare the dependency as scope=provided to eliminate it from the application’s
executable JAR and transitive dependencies and have no extra bloat in the module as well.

Maven Dependency

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<scope>provided</scope>
</dependency>

6.4. Example Output

Running our example using the same, simple toString() print statement and property definitions
produces near identical results from the caller’s perspective. The only difference here is the specific
text used in the returned string.

16

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/RetentionPolicy.html

private BoatProperties boatProperties;
@Autowired
private CompanyProperties companyProperties;

public void run(String... args) throws Exception {
System.out.println("boatProperties=" + boatProperties); @®

System.out.println("====");
System.out.println("companyProperties="

+ companyProperties); @

@ BoatProperties JavaBean methods were provided by hand

@ CompanyProperties JavaBean methods were provided by Lombok

application.properties
app.config.boat.name=Maxum
app.config.company.name=Acme

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

boatProperties=BoatProperties{name="Maxum'}

companyProperties=CompanyProperties(name=Acme)

There is a Spring @ConstructorBinding issue that prevents property metadata
from being automatically generated. This is due to a Lombok issue where usable
argument names are not provided in the generated constructor. The only
workaround at this time if you want metadata generated for @ConstructorBinding
with Lombok is to provide a custom constructor supplying the valid names. The
IDE is very good at generating these for you until that issue is corrected.

@ConfigurationProperties("app.config.company")
@ConstructorBinding

@Data
A @Validated
public class CompanyProperties {

@NotNull
private final String name;

//https://github.com/spring-projects/spring-boot/issues/18730
//https://github.com/rzwitserloot/lombok/issues/2275
public CompanyProperties(String name) {

this.name = name;

}

17

https://github.com/spring-projects/spring-boot/issues/18730
https://github.com/rzwitserloot/lombok/issues/2275

Lombok ConstructorBinding Issue Listed as Closed

o Since providing the warning above, the version of Lombok has advanced in class
(1.18.20), issue closed, and may have been resolved. Confirmation needed.

With the exception of the property metadata issue just mentioned, adding Lombok to our
development approach for JavaBeans is almost a 100% win situation. 80-90% of the JavaBean class
is written for us and we can override the defaults at any time with further annotations or custom
methods. The fact that Lombok will not replace methods we have manually provided for the class
always gives us an escape route in the event something needs to be customized.

18

Chapter 7. Relaxed Binding

One of the key differences between Spring’s @Value injection and @ConfigurationProperties is the
support for relaxed binding by the later. With relaxed binding, property definitions do not have to
be an exact match. JavaBean properties are commonly defined with camelCase. Property
definitions can come in a number of different case formats. Here is a few.

» camelCase

» UpperCamelCase

¢ kebab-case

* snake case

UPPERCASE

7.1. Relaxed Binding Example JavaBean

In this example, I am going to add a class to express many different properties of a business. Each
of the attributes is expressed using camelCase to be consistent with common Java coding
conventions and further validated using Jakarta EE Validation.

JavaBean Attributes using camelCase

("app.config.business")

public class BusinessProperties {
private final String name;
private final String streetAddress;
private final String city;
private final String state;

private final String zipCode;
private final String notes;

7.2. Relaxed Binding Example Properties

The properties supplied provide an example of the relaxed binding Spring implements between
property and JavaBean definitions.

19

https://danielmiessler.com/blog/a-list-of-different-case-types/
https://www.oracle.com/technetwork/java/codeconventions-135099.html
https://www.oracle.com/technetwork/java/codeconventions-135099.html

Example Properties to Demonstrate Relaxed Binding

application.properties

app.config.business.name=Acme
app.config.business.street-address=100 Suburban Dr
app.config.business.CITY=Newark
app.config.business.State=DE
app.config.business.zip_code=19711
app.config.business.notess=This is a property name typo

» kebab-case street-address matched Java camelCase streetAddress

UPPERCASE CITY matched Java camelCase city
» UpperCamelCase State matched Java camelCase state
* snake_case zip_code matched Java camelCase zipCode

* typo notess does not match Java camelCase notes

7.3. Relaxed Binding Example Output

These relaxed bindings are shown in the following output. However, the note attribute is an
example that there is no magic when it comes to correcting typo errors. The extra character in
notess prevented a mapping to the notes attribute. The IDE/metadata can help avoid the error and
validation can identify when the error exists.

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

businessProperties=BusinessProperties(name=Acme, streetAddress=100 Suburban Dr,
city=Newark, state=DE, zipCode=19711, notes=null)

20

Chapter 8. Nested Properties

The previous examples used a flat property model. That may not always be the case. In this
example we will look into mapping nested properties.

Nested Properties Example

@

app.config.corp.name=Acme

@

app.config.corp.address.street=100 Suburban Dr
app.config.corp.address.city=Newark
app.config.corp.address.state=DE
app.config.corp.address.zip=19711

@ name is part of a flat property model below corp

@ address is a container of nested properties

8.1. Nested Properties JavaBean Mapping

The mapping of the nested class is no surprise. We supply a JavaBean to hold their nested
properties and reference it from the host/outer-class.

Nested Property Mapping

public class AddressProperties {
private final String street;

private final String city;
private final String state;

private final String zip;

o In this specific case we are using a read-only JavaBean and need to supply the
@ConstructorBinding annotation.

8.2. Nested Properties Host JavaBean Mapping

The host class (CorporateProperties) declares the base property prefix and a reference (address) to
the nested class.

21

Host Property Mapping

import org.springframework.boot.context.properties.NestedConfigurationProperty;

("app.config.corp")

public class CorporationProperties {

private final String name;
//needed for metadata

//@Valid
private final AddressProperties address;

The @NestedConfigurationProperty 1is only supplied to generate correct
o metadata — otherwise only a single address property will be identified to exist
within the generated metadata.

The validation initiated by the @Validated annotation seems to automatically
o propagate into the nested AddressProperties class without the need to add @Valid
annotation.

8.3. Nested Properties Output

The defined properties are populated within the host and nested bean and accessible to
components within the application.

Nested Property Example Output
$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

corporationProperties=CorporationProperties(name=Acme,
address=AddressProperties(street=null, city=Newark, state=DE, zip=19711))

22

Chapter 9. Property Arrays

As the previous example begins to show, property mapping can begin to get complex. I won’t
demonstrate all of them. Please consult documentation available on the Internet for a complete
view. However, I will demonstrate an initial collection mapping to arrays to get started going a level
deeper.

In this example, RouteProperties hosts a local name property and a list of stops that are of type
AddressProperties that we used before.

Property Array JavaBean Mapping

("app.config.route")

public class RouteProperties {

private String name;

(min = 1)
private List<AddressProperties> stops; @

@ RouteProperties hosts list of stops as AddressProperties

9.1. Property Arrays Definition

The above can be mapped using a properties format.

Property Arrays Example Properties Definition

application.properties

app.config.route.name: Superbowl
app.config.route.stops[@].street: 1101 Russell St
app.config.route.stops[@].city: Baltimore
app.config.route.stops[@].state: MD
app.config.route.stops[@].zip: 21230
app.config.route.stops[1].street: 347 Don Shula Drive
app.config.route.stops[1].city: Miami
app.config.route.stops[1].state: FLA
app.config.route.stops[1].zip: 33056

However, it may be easier to map using YAML.

23

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding
https://gettaurus.org/docs/YAMLTutorial/

Property Arrays Example YAML Definition

application.yml
app:
config:
route:
name: Superbowl
stops:
- street: 1101 Russell St
city: Baltimore
state: MD
zip: 21230
- street: 347 Don Shula Drive
city: Miami
state: FLA
zip: 33056

9.2. Property Arrays Output

Injecting that into our application and printing the state of the bean (with a little formatting)
produces the following output showing that each of the stops were added to the route using the
AddressProperty

Property Arrays Example Output
$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar
routeProperties=RouteProperties(name=Superbowl, stops=[

AddressProperties(street=1101 Russell St, city=Baltimore, state=MD, zip=21230),
AddressProperties(street=347 Don Shula Drive, city=Miami, state=FLA, zip=33056)

D

24

Chapter 10. System Properties

Note that Java properties can come from several sources and we are able to map them from
standard Java system properties as well.

The following example shows mapping three (3) system properties: user.name, user.home, and
user.timezone to a @ConfigurationProperties class.

Example System Properties JavaBean

("user")

public class UserProperties {
private final String name; @
private final String home; @

private final String timezone; ®

® mapped to SystemProperty user .name
@ mapped to SystemProperty user . home

® mapped to SystemProperty user.timezone

10.1. System Properties Usage

Injecting that into our components give us access to mapped properties and, of course, access to
them using standard getters and not just toString() output.

Example System Properties Usage

public class AppCommand implements CommandLineRunner {

private UserProperties userProps;
public void run(String... args) throws Exception {

System.out.println(userProps); @
System.out.println("user.home=" + userProps.getHome()); @

@ output UserProperties toString

@ get specific value mapped from user . home

25

System Properties Example Output
$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

UserProperties(name=jim, home=/Users/jim, timezone=America/New_York)
user .home=/Users/jim

26

Chapter 11. @ConfigurationProperties Class
Reuse

The examples to date have been singleton values mapped to one root source. However, as we saw
with AddressProperties, we could have multiple groups of properties with the same structure and
different root prefix.

In the following example we have two instances of person. One has the prefix of owner and the
other manager, but they both follow the same structural schema.

Example Properties with Common Structure

application.yml
owner: @M
name: Steve Bushati
address:
city: Millersville
state: MD
zip: 21108

manager: @M
name: Eric Decosta
address:
city: Owings Mills
state: MD
zip: 21117

® owner and manager root prefixes both follow the same structural schema

11.1. @ConfigurationProperties Class Reuse Mapping

We would like two (2) bean instances that represent their respective person implemented as one
JavaBean class. We can structurally map both to the same class and create two instances of that
class. However when we do that—we can no longer apply the @ConfigurationProperties annotation
and prefix to the bean class because the prefix will be instance-specific

@ConfigurationProperties Class Reuse JavaBean Mapping

//@ConfigurationProperties("???") multiple prefixes mapped @

public class PersonProperties {

private String name;

private AddressProperties address;

27

@ unable to apply root prefix-specific @ConfigurationProperties to class

11.2. @ConfigurationProperties @Bean Factory

We can solve the issue of having two (2) separate leading prefixes by adding a @Bean factory method
for each use and we can use our root-level application class to host those factory methods.

@Bean Factory Methods for Separate Property Root Prefixes

public class ConfigurationPropertiesApp {

("owner") @
public PersonProperties ownerProps() {
return new PersonProperties(); @®

}

("manager") @
public PersonProperties managerProps() {
return new PersonProperties(); @

}

@ @Bean factory method returns JavaBean instance to use

@ Spring populates the JavaBean according to the ConfigurationProperties annotation

We are no longer able to use read-only JavaBeans when using the @Bean factory
method in this way. We are returning a default instance for Spring to populate
based on the specified @ConfigurationProperties prefix of the factory method.

11.3. Injecting ownerProps

Taking this one instance at a time, when we inject an instance of PersonProperties into the
ownerProps attribute of our component, the ownerProps @Bean factory is called and we get the

information for our owner.

Owner Person Injection

public class AppCommand implements CommandLineRunner {

private PersonProperties ownerProps;

Owner Person Injection Result

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

28

PersonProperties(name=Steve Bushati, address=AddressProperties(street=null,
city=Millersville, state=MD, zip=21108))

Great! However, there was something subtle there that allowed things to work.

11.4. Injection Matching

Spring had two @Bean factory methods to chose from to produce an instance of PersonProperties.

Two PersonProperties Sources

("owner")
public PersonProperties ownerProps() {

("manager")
public PersonProperties managerProps() {

The ownerProps @Bean factory method name happened to match the ownerProps Java attribute name
and that resolved the ambiguity.

Target Attribute Name for Injection provides Qualifier

public class AppCommand implements CommandLineRunner {

private PersonProperties ownerProps; @

@ Attribute name of injected bean matches @Bean factory method name

11.5. Ambiguous Injection

If we were to add the manager and specifically not make the two names match, there will be
ambiguity as to which @Bean factory to use. The injected attribute name is manager and the desired
@Bean factory method name is managerProps.

Manager Person Injection

public class AppCommand implements CommandLineRunner {

private PersonProperties manager; @

@ Java attribute name does not match @Bean factory method name

29

$ java -jar target/appconfig-configproperties-example-*-SNAPSHOT-bootexec.jar

kkkkkkhkhkkhhkkhkhkkhhkhkhkhkhhkkhkkk

APPLICATION FAILED TO START

kkkkkkhhkhkhhkkhhkhkhhkhkhhhrhkkrkkkx

Description:

Field manager in info.ejava.examples.app.config.configproperties.AppCommand
required a single bean, but 2 were found:
- ownerProps: defined by method 'ownerProps' in
info.ejava.examples.app.config.configproperties.ConfigurationPropertiesApp
- managerProps: defined by method 'managerProps' in
info.ejava.examples.app.config.configproperties.ConfigurationPropertiesApp

Action:

Consider marking one of the beans as @Primary, updating the consumer to accept
multiple beans,
or using @Qualifier to identify the bean that should be consumed

11.6. Injection @Qualifier

As the error message states, we can solve this one of several ways. The @Qualifier route is mostly
what we want and can do that one of at least three ways.

11.7. way1: Create Custom @Qualifier Annotation

Create a custom @Qualifier annotation and apply that to the @Bean factory and injection point.

* benefits: eliminates string name matching between factory mechanism and attribute

» drawbacks: new annotation must be created and applied to both factory and injection point

Custom @Manager Qualifier Annotation
package info.ejava.examples.app.config.configproperties.properties;
import org.springframework.beans.factory.annotation.Qualifier;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

({ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER})
(RetentionPolicy.RUNTIME)
public Manager {

}

30

@Manager Annotation Applied to @Bean Factory Method

("manager")
®
public PersonProperties managerProps() {
return new PersonProperties();

}

@ @Manager annotation used to add additional qualification beyond just type

@Manager Annotation Applied to Injection Point

private PersonProperties ownerProps;

@

private PersonProperties manager;

@ @Manager annotation is used to disambiguate the factory choices

11.8. way2: @Bean Factory Method Name as Qualifier
Use the name of the @Bean factory method as a qualifier.

* benefits: no custom qualifier class required and factory signature does not need to be modified

» drawbacks: text string must match factory method name

private PersonProperties ownerProps;

("managerProps") ®
private PersonProperties manager;

@ @Bean factory name is being applied as a qualifier versus defining a type

11.9. way3: Match @Bean Factory Method Name

Change the name of the injected attribute to match the @Bean factory method name

* benefits: simple and properly represents the semantics of the singleton property

» drawbacks: injected attribute name must match factory method name

PersonProperties Sources

("owner")
public PersonProperties ownerProps() {

31

("manager")
public PersonProperties managerProps() {

Injection Points

private PersonProperties ownerProps;

private PersonProperties managerProps; @

@ Attribute name of injected bean matches @Bean factory method name

11.10. Ambiguous Injection Summary

Factory choices and qualifiers is a whole topic within itself. However, this set of examples showed
how @ConfigurationProperties can leverage @Bean factories to assist in additional complex property
mappings. We likely will be happy taking the simple way3 solution but it is good to know there is an
easy way to use a @Qualifier annotation when we do not want to rely on a textual name match.

32

Chapter 12. Summary

In this module we
* mapped properties from property sources to JavaBean classes annotated with
@ConfigurationProperties and injected them into component classes

» generated property metadata that can be used by IDEs to provide an aid to configuring
properties

* implemented a read-only JavaBean

* defined property validation using Jakarta EE Java Validation framework

» generated boilerplate JavaBean constructs with the Lombok library

* demonstrated how relaxed binding can lead to more flexible property names

* mapped flat/simple properties, nested properties, and collections of properties

* leveraged custom @Bean factories to reuse common property structure for different root
instances

* leveraged @Qualifier sin order to map or disambiguate injections

33

	Configuration Properties
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Mapping properties to @ConfigurationProperties class
	2.1. Mapped Java Class
	2.2. Injection Point
	2.3. Initial Error
	2.4. Registering the @ConfigurationProperties class
	2.5. Result

	Chapter 3. Metadata
	3.1. Spring Configuration Metadata
	3.2. Spring Configuration Processor
	3.3. Javadoc Supported
	3.4. Rebuild Module
	3.5. IDE Property Help

	Chapter 4. Constructor Binding
	4.1. Property Names Bound to Constructor Parameter Names
	4.2. Constructor Parameter Name Mismatch

	Chapter 5. Validation
	5.1. Validation Annotations
	5.2. Validation Error

	Chapter 6. Boilerplate JavaBean Methods
	6.1. Generating Boilerplate Methods with Lombok
	6.2. Visible Generated Constructs
	6.3. Lombok Build Dependency
	6.4. Example Output

	Chapter 7. Relaxed Binding
	7.1. Relaxed Binding Example JavaBean
	7.2. Relaxed Binding Example Properties
	7.3. Relaxed Binding Example Output

	Chapter 8. Nested Properties
	8.1. Nested Properties JavaBean Mapping
	8.2. Nested Properties Host JavaBean Mapping
	8.3. Nested Properties Output

	Chapter 9. Property Arrays
	9.1. Property Arrays Definition
	9.2. Property Arrays Output

	Chapter 10. System Properties
	10.1. System Properties Usage

	Chapter 11. @ConfigurationProperties Class Reuse
	11.1. @ConfigurationProperties Class Reuse Mapping
	11.2. @ConfigurationProperties @Bean Factory
	11.3. Injecting ownerProps
	11.4. Injection Matching
	11.5. Ambiguous Injection
	11.6. Injection @Qualifier
	11.7. way1: Create Custom @Qualifier Annotation
	11.8. way2: @Bean Factory Method Name as Qualifier
	11.9. way3: Match @Bean Factory Method Name
	11.10. Ambiguous Injection Summary

	Chapter 12. Summary

