Bean Factory and Dependency
Injection
jim stafford

Fall 2022 2022-09-05: Built: 2022-12-07 06:11 EST

Table of Contents

. Introduction

1.1. Goals
1.2. Objectives

. Hello Service

2.1. Hello Service API

2.2. Hello Service StdOut

2.3. Hello Service API pom.xml

2.4. Hello Service StdOut pom.xml

2.5. Hello Service Interface

2.6. Hello Service Sample Implementation
2.7. Hello Service Modules Complete

2.8. Hello Service API Maven Build

2.9. Hello Service StdOut Maven Build

. Application Module

3.1. Application Maven Dependency
3.2. Viewing Dependencies
3.3. Application Java Dependency

. Dependency Injection

5. Spring Dependency Injection

7.
8.
9.

5.1. @Autowired Annotation
5.2. Dependency Injection Flow

. Bean Missing

6.1. Bean Missing Error Solution(s)
@Configuration classes

@Bean Factory Method

@Bean Factory Used

10. Factory Alternative: XML Configuration

11. Summary

© O 0 00 O U1 U1 b b W W N N DN R P,

[T T S S G G N O Y
(=T '- IS B < PR & 5 B R U SU R (O NCR T

Chapter 1. Introduction

This material provides an introduction to configuring an application using a factory method. This is
the most basic use of separation between the interface used by the application and the decision of
what the implementation will be.

The configuration choice shown will be part of the application but as you will see later,
configurations can be deeply nested — far away from the details known to the application writer.

1.1. Goals

The student will learn:

* to decouple an application through the separation of interface and implementation

* to configure an application using dependency injection and factory methods of a configuration
class

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1. implement a service interface and implementation component
2. package a service within a Maven module separate from the application module

3. implement a Maven module dependency to make the component class available to the
application module

4. use a @Bean factory method of a @Configuration class to instantiate a Spring-managed component

Chapter 2. Hello Service

To get started, we are going to create a sample Hello service. We are going to implement an
interface and a single implementation right off the bat. They will be housed in two separate

modules
* hello-service-api

* hello-service-stdout

hello-service-api\|

©He|lr:-
o

hello-ser\{ice-stdout\
|

©5tdoutHello

We will start out by creating two separate module directories.

2.1. Hello Service API

The Hello Service API module will contain a single interface and pom.xml.

hello-service-api/

|-- pom.xml
‘-- src
‘-- main
‘-- java
‘-~ info
‘-- ejava
‘-~ examples
‘-~ app
‘-~ hello

‘-~ Hello.java @

@ Service interface

2.2. Hello Service StdOut

The Hello Service StdOut module will contain a single implementation class and pom.xml.

hello-service-stdout/
|-- pom.xml

‘-- sre

‘-- main
‘-- java
‘-~ info
‘-- ejava
‘-- examples
"-- app
‘-- hello
‘-- stdout

‘-~ StdOutHello.java @

@ Service implementation

2.3. Hello Service API pom.xml

We will be building a normal Java JAR with no direct dependencies on Spring Boot or Spring.

hello-service-api pom.xml

#pom. xml

<groupId>info.ejava.examples.app</groupld>
<version>6.0.1-SNAPSHOT</version>
<artifactId>hello-service-api</artifactId>
<packaging>jar</packaging>

2.4. Hello Service StdOut pom.xml

The implementation will be similar to the interface’s pom.xml except it requires a dependency on
the interface module.

hello-service-stdout pom.xml

#pom. xml

<groupld>info.ejava.examples.app</groupld>
<version>6.0.1-SNAPSHOT</version>
<artifactId>hello-service-stdout</artifactId>
<packaging>jar</packaging>

<dependencies>
<dependency>
<groupId>${project.groupIld}</groupId> @
<artifactId>hello-service-api</artifactId>
<version>${project.version}</version> @
</dependency>
</dependencies>

@ Dependency references leveraging ${project} variables module shares with dependency

o Since we are using the same source tree, we can leverage ${project} variables.
This will not be the case when declaring dependencies on external modules.

2.5. Hello Service Interface
The interface is quite simple, just pass in the String name for what you want the service to say hello
to.

package info.ejava.examples.app.hello;

public interface Hello {
void sayHello(String name);

}

The service instance will be responsible for

* the greeting

 the implementation —how we say hello

"Application @Bean says Hey" sl ot :
"Xl @Bean says Hey" String greeting

component houses greeting: Il‘l © «components
"Hello" Implementation caller supplies name to greet:
/ "Waorld"

sayHello(String name}l"’/

Components output:
"Hello World"
"Application @Bean says Hey World"
“ml @Bean says Hey World"

2.6. Hello Service Sample Implementation

Our sample implementation is just as simple. It maintains the greeting in a final instance attribute
and uses stdout to print the message.

package info.ejava.examples.app.hello.stdout; @

public class StdOutHello implements Hello {
private final String greeting; @

public StdOutHello(String greeting) { ®

this.greeting = greeting;

@
public void sayHello(String name) {

System.out.println(greeting + " " + name);

}

@® Implementation defined within own package

@ greeting will hold our phrase for saying hello and is made final to highlight it is required and
will not change during the lifetime of the class instance

® A single constructor is provided to define a means to initialize the instance. Remember — the
greeting is final and must be set during class instantiation and not later during a setter.

@ The sayHello() method provides implementation of method defined in interface

0 final requires the value set when the instance is created and never change.
G) Constructor injection makes required attributes marked final easier to set during
- testing

2.7. Hello Service Modules Complete

We are now done implementing our sample service interface and implementation — just build and
install to make available to the application we will work on next.

2.8. Hello Service API Maven Build

$ mvn clean install -f hello-service-api
[INFO] Scanning for projects...

[INFO]

[INFO] ------------- < info.ejava.examples.app:hello-service-api >--------------
[INFO] Building App::Config::Hello Service API 6.0.1-SNAPSHOT

[VJ[FD)] =========cc=ssssscoccazcczasoas L JAF [s======scccssssscoccccasasasomaas
[INFO]

[INFO] --- maven-clean-plugin:3.71.0:clean (default-clean) @ hello-service-api ---
[INFO]

[INFO] --- maven-resources-plugin:3.1.0:resources (default-resources) @ hello-service-
api ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory .../app-config/hello-service-
api/src/main/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @ hello-service-api

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 1 source file to .../app-config/hello-service-api/target/classes
[INFO]

[INFO] --- maven-resources-plugin:3.1.0:testResources (default-testResources) @ hello-
service-api ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory .../app-config/hello-service-
api/src/test/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.8.1:testCompile (default-testCompile) @ hello-
service-api ---

[INFO] No sources to compile

[INFO]

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ hello-service-api ---
[INFO] No tests to run.

[INFO]

[INFO] --- maven-jar-plugin:3.1.2:jar (default-jar) @ hello-service-api ---

[INFO] Building jar: .../app-config/hello-service-api/target/hello-service-api-6.0.1-
SNAPSHOT. jar

[INFO]

[INFO] --- maven-install-plugin:3.0.0-M1:install (default-install) @ hello-service-api
[INFO] Installing .../app-config/hello-service-api/target/hello-service-api-6.0.1-
SNAPSHOT.jar to .../.m2/repository/info/ejava/examples/app/hello-service-api/6.0.1-
SNAPSHOT/hello-service-api-6.0.1-SNAPSHOT. jar

[INFO] Installing .../app-config/hello-service-api/pom.xml to
.../.m2/repository/info/ejava/examples/app/hello-service-api/6.0.1-SNAPSHOT/hello-
service-api-6.0.1-SNAPSHOT.pom

[INFO] ---------mmmmmmmmmmo oo
[INFO] BUILD SUCCESS

[INFO] ------mmmmmmm i m oo
[INFO] Total time: 2.070 s

2.9. Hello Service StdOut Maven Build

$ mvn clean install -f hello-service-stdout
[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < info.ejava.examples.app:hello-service-stdout >------------
[INFO] Building App::Config::Hello Service StdOut 6.0.1-SNAPSHOT

[INFO] ---------=-=--mmmmmmmmm - - [jar J------- o
[INFO]

[INFO] --- maven-clean-plugin:3.71.0:clean (default-clean) @ hello-service-stdout ---
[INFO]

[INFO] --- maven-resources-plugin:3.1.0:resources (default-resources) @ hello-service-
stdout ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory .../app-config/hello-service-
stdout/src/main/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @ hello-service-
stdout ---

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 1 source file to .../app-config/hello-service-stdout/target/classes
[INFO]

[INFO] --- maven-resources-plugin:3.1.0:testResources (default-testResources) @ hello-
service-stdout ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory .../app-config/hello-service-
stdout/src/test/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.8.71:testCompile (default-testCompile) @ hello-
service-stdout ---

[INFO] No sources to compile

[INFO]

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ hello-service-stdout ---
[INFO] No tests to run.

[INFO]

[INFO] --- maven-jar-plugin:3.1.2:jar (default-jar) @ hello-service-stdout ---

[INFO] Building jar: .../app-config/hello-service-stdout/target/hello-service-stdout-
6.0.1-SNAPSHOT. jar

[INFO]

[INFO] --- maven-install-plugin:3.0.0-M1:install (default-install) @ hello-service-
stdout ---

[INFO] Installing .../app-config/hello-service-stdout/target/hello-service-stdout-
6.0.1-SNAPSHOT.jar to .../.m2/repository/info/ejava/examples/app/hello-service-
stdout/6.0.1-SNAPSHOT/hello-service-stdout-6.0.1-SNAPSHOT. jar

[INFO] Installing .../app-config/hello-service-stdout/pom.xml to
.../.m2/repository/info/ejava/examples/app/hello-service-stdout/6.0.1-SNAPSHOT/hello-
service-stdout-6.0.1-SNAPSHOT. pom

[INFO] -------mmmmmmmm o
[INFO] BUILD SUCCESS

[INFO] =------mmmmmmmmm oo oo oo
[INFO] Total time: 2.658 s

Chapter 3. Application Module

We now move on to developing our application within its own module containing two (2) classes
similar to earlier examples.

|-- pom.xml
‘-- src
‘Y-- main
‘-- java
‘-- info
‘-- ejava
‘-~ examples
‘-- app

‘-- config
‘-~ beanfactory
|-- AppCommand.java @
‘-~ SelfConfiguredApp.java @

@ Class with Java main() that starts Spring

@ Class containing our first component that will be the focus of our injection

3.1. Application Maven Dependency

We make the Hello Service visible to our application by adding a dependency on the hello-service-
api and hello-service-stdout artifacts. Since the implementation already declares a compile
dependency on the interface, we can get away with only declaring a direct dependency just on the
implementation.

<groupId>info.ejava.examples.app</groupld>
<artifactId>appconfig-beanfactory-example</artifactId>
<name>App::Config::Bean Factory Example</name>

<dependencies>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>hello-service-stdout</artifactId> ®
<version>${project.version}</version>
</dependency>
</dependencies>

@ Dependency on implementation creates dependency on both implementation and interface

o In this case, the module we are depending upon is in the same groupId and shares

the same version. For simplicity of reference and versioning, I used the ${project}
variables to reference it. That will not always be the case.

injected with
- “mcalls -~
e S,
ra My
AY

appconfig-beanfactﬁw:example\ hella-sewice-api\

/ 1

¥
i

Y
@AppCDmmand ©He|lo

| .

\ helln-se}yice-stdout\

«@S5pringBootApplication:
© SelfConfiguredApp ©StdOUtHe”D

3.2. Viewing Dependencies
You can verify the dependencies exist using the tree goal of the dependency plugin.
Artifact Dependency Tree
$ mvn dependency:tree -f hello-service-stdout
tiﬁFO] --- maven-dependency-plugin:3.1.7:tree (default-cli) @ hello-service-stdout ---

[INFO] info.ejava.examples.app:hello-service-stdout:jar:6.0.1-SNAPSHOT
[INFO] \- info.ejava.examples.app:hello-service-api:jar:6.0.1-SNAPSHOT:compile

3.3. Application Java Dependency

Next we add a reference to the Hello interface and define how we can get it injected. In this case we
are using contructor injection where the instance is supplied to the class through a parameter to
the constructor.

The component class now has a non-default constructor to allow the Hello
o implementation to be injected and the Java attribute is defined as final to help
assure that the value is assigned during the constructor.

package info.ejava.examples.app.config.beanfactory;

import org.springframework.boot.CommandLineRunner;

import org.springframework.stereotype.Component;

import info.ejava.examples.app.hello.Hello;

public class AppCommand implements CommandLineRunner {
private final Hello greeter; @

public AppCommand(Hello greeter) { @
this.greeter = greeter;

}

public void run(String... args) throws Exception {
greeter.sayHello("World");
}

® Add a reference to the Hello interface. Java attribute defined as final to help assure that the
value is assigned during the constructor.

@ Using contructor injection where the instance is supplied to the class through a parameter to the
constructor

10

Chapter 4. Dependency Injection

Our AppCommand class has been defined only with the interface to Hello and not a specific
implementation.

This Separation of Concerns helps improve modularity, testability, reuse, and many other desirable
features of an application. The interaction between the two classes is defined by an interface.

But how do does our client class (AppCommand) get an instance of the implementation (StdOutHello)?

o If the client class directly instantiates the implementation—it is coupled to that specific
implementation.

public AppCommand() {
this.greeter = new StdOutHello("World");

}

« If the client class procedurally delegates to a factory — it runs the risk of violating Separation of
Concerns by adding complex initialization code to its primary business purpose

public AppCommand() {
this.greeter = BeanFactory.makeGreeter();

}

Traditional procedural code normally makes calls to libraries in order to perform a specific
purpose. If we instead remove the instantiation logic and decisions from the client and place that
elsewhere, we can keep the client more focused on its intended purpose. With this inversion of
control (IoC), the application code is part of a framework that calls the application code when it is
time to do something versus the other way around. In this case the framework is for application
assembly.

Most frameworks, including Spring, implement dependency injection through a form of IoC.

11

Chapter 5. Spring Dependency Injection

We defined the dependency using the Hello interface and have three primary ways to have
dependencies injected into an instance.

import org.springframework.beans.factory.annotation.Autowired;

public class AppCommand implements CommandLineRunner {
//@Autowired -- FIELD injection ®
private Hello greeter;

//-- Constructor injection @
public AppCommand(Hello greeter) {
this.greeter = greeter;

}

//0Autowired -- PROPERTY injection @
public void setGreeter(Hello hello) {
this.greeter = hello;

}

@ constructor injection - injected values required prior to instance being created
@ field injection - value injected directly into attribute

® setter or property injection - setter() called with value

5.1. @Autowired Annotation

The @Autowired(required=--+) annotation

* may be applied to fields, methods, constructors
e @Autowired(required=true) - default value for required attribute
o successful injection mandatory when applied to a property
o specific constructor use required when applied to a constructor
= only a single constructor per class may have this annotation
* @Autowired(required=false)
> injected bean not required to exist when applied to a property
- specific constructor an option for container to use
o multiple constructors may have this annotation applied
= container will determine best based on number of matches
o single constructor has an implied @Autowired(required=false) - making annotation

optional

There are more details to learn about injection and the lifecycle of a bean. However, know that we

12

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html

are using constructor injection at this point in time since the dependency is required for the
instance to be valid.

5.2. Dependency Injection Flow

In our example:

* Spring will detect the AppCommand component and look for ways to instantiate it
* The only constructor requires a Hello instance

» Spring will then look for a way to instantiate an instance of Hello

13

Chapter 6. Bean Missing

When we go to run the application, we get the following error

$ mvn clean package

hkkkkkhhkhhkkhhkkhhhkhhhrhkkrkkkx

APPLICATION FAILED TO START

hkhhkhhkhhhkrhhhhhhhhrhkrrkxkx

Description:

Parameter @ of constructor in AppCommand required a bean of type 'Hello' that could
not be found.

Action:

Consider defining a bean of type 'Hello' in your configuration.

The problem is that the container has no knowledge of any beans that can satisfy the only available
constructor. The StdOutHello class is not defined in a way that allows Spring to use it.

6.1. Bean Missing Error Solution(s)

We can solve this in at least two (2) ways.

1. Add @Component to the StdOutHello class. This will trigger Spring to directly instantiate the
class.

public class StdOutHello implements Hello {

o problem: It may be one of many implementations of Hello

2. Define what is needed using a @Bean factory method of a @Configuration class. This will trigger
Spring to call a method that is in charge of instantiating an object of the type identified in the
method return signature.

public class AConfigurationClass {

public Hello hello() {
return new StdOutHello("...");

}

14

Chapter 7. @Configuration classes

@Configuration classes are classes that Spring expects to have one or more @Bean factory methods. If
you remember back, our Spring Boot application class was annotated with @SpringBootApplication

@SpringBootApplication @D
//==> wraps @SpringBootConfiguration @
// ==> wraps @Configuration
public class SelfConfiguredApp {
public static final void main(String...args) {
SpringApplication.run(SelfConfiguredApp.class, args);

}
/...

® @SpringBootApplication is a wrapper around a few annotations including
@SpringBootConfiguration

@ @SpringBootConfiguration is an alternative annotation to using @Configuration with the caveat
that there be only one @SpringBootConfiguration per application

Therefore, we have the option to use our Spring Boot application class to host the configuration and
the @Bean factory.

15

Chapter 8. @Bean Factory Method

There is more to @Bean factory methods than we will cover here, but at its simplest and most
functional level — this is a method the container will call when the container determines it needs a
bean of a certain type and locates a @Bean annotated method with a return type of the required type.

Adding a @Bean factory method to our Spring Boot application class will result in the following in

our Java class.

@ 6
public class SelfConfiguredApp {
public static final void main(String...args) {
SpringApplication.run(SelfConfiguredApp.class, args);

}

@
public Hello hello() { @
return new StdOutHello("Application @Bean says Hey"); @

}

® method annotated with @Bean implementation

@ method returns Hello type required by container

® method returns a fully instantiated instance.

@ method hosted within class with @Configuration annotation

® @SpringBootConfiguration annotation included the capability defined for @Configuration

o Anything missing to create instance gets declared as an input to the method and it
will get created in the same manner and passed as a parameter.

16

Chapter 9. @Bean Factory Used

With the @Bean factory method in place, all comes together at runtime to produce the following:

$ java -jar target/appconfig-beanfactory-example-*-SNAPSHOT-bootexec.jar

Application @Bean says Hey World

e the container
o obtained an instance of a Hello bean

o passed that bean to the AppCommand class' constructor to instantiate that @Component

* the @Bean factory method

> chose the implementation of the Hello service (StdOutHello)

o chose the greeting to be used ("Application @Bean says Hey")

return new StdOutHello("Application @Bean says Hey");

* the AppCommand CommandLineRunner determined who to say hello to ("World")

greeter.sayHello("World");

17

Chapter 10. Factory Alternative: XML
Configuration

Although most developments today prefer Java-based configurations, the legacy approach of
defining beans using XML is still available.

To do so, we define an @ImportResource annotation on a @Configuration class that references
pathnames using either a class or file path. In this example we are referencing a file called
applicationContext.xml in the resources package within the classpath.

import org.springframework.context.annotation.ImportResource;

({"classpath:contexts/applicationContext.xml"}) @
public class XmlConfiguredApp {
public static final void main(String...args) {
SpringApplication.run(XmlConfiguredApp.class, args);
}

@ @ImportResource will enact the contents of context/applicationContext.xml

The XML file can be placed inside the JAR of the application module by adding it to the
src/main/resources directory of this or other modules in out classpath.

|-- pom.xml
‘-- src
‘-- main
|-- java
| ‘-- info
| ‘-- ejava
| ‘-- examples
| "-- app
| ‘-- config
| ‘-- xmlconfig
| | -- AppCommand.java
| ‘-~ XmlConfiguredApp.java
‘-~ resources
‘-- contexts

‘-- applicationContext.xml
$ jar tf target/appconfig-xmlconfig-example-*-SNAPSHOT-bootexec.jar | grep

applicationContext.xml
BOOT-INF/classes/contexts/applicationContext.xml

The XML file has a specific schema to follow. It can be every bit as powerful as Java-based
configurations and have the added feature that it can be edited without recompilation of a Java

18

https://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/html/xsd-configuration.html

class.

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:context=

"http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean class="info.ejava.examples.app.hello.stdout.StdOutHello"> @
<constructor-arg value="Xml @Bean says Hey" /> @

</bean>
</beans>

@ A specific implementation of ther Hello interface is defined

@ Text is injected into the constructor when container instantiates

This produces the same relative result as the Java-based configuration.

$ java -jar target/appconfig-xmlconfig-example-*-SNAPSHOT-bootexec.jar

Xml @Bean says Hey World

19

Chapter 11. Summary

In this module we

* decoupled part of our application into three Maven modules (app, iface, and impl1)

* decoupled the implementation details (StdOutHello) of a service from the caller (AppCommand) of
that service

injected the implementation of the service into a component using constructor injection
* defined a @Bean factory method to make the determination of what to inject
» showed an alternative using XML-based configuration and @ImportResource
In future modules we will look at more detailed aspects of Bean lifecycle and @Bean factory

methods. Right now we are focused on following a path to explore decoupling our the application
even further.

20

	Bean Factory and Dependency Injection
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Hello Service
	2.1. Hello Service API
	2.2. Hello Service StdOut
	2.3. Hello Service API pom.xml
	2.4. Hello Service StdOut pom.xml
	2.5. Hello Service Interface
	2.6. Hello Service Sample Implementation
	2.7. Hello Service Modules Complete
	2.8. Hello Service API Maven Build
	2.9. Hello Service StdOut Maven Build

	Chapter 3. Application Module
	3.1. Application Maven Dependency
	3.2. Viewing Dependencies
	3.3. Application Java Dependency

	Chapter 4. Dependency Injection
	Chapter 5. Spring Dependency Injection
	5.1. @Autowired Annotation
	5.2. Dependency Injection Flow

	Chapter 6. Bean Missing
	6.1. Bean Missing Error Solution(s)

	Chapter 7. @Configuration classes
	Chapter 8. @Bean Factory Method
	Chapter 9. @Bean Factory Used
	Chapter 10. Factory Alternative: XML Configuration
	Chapter 11. Summary

