Auto Configuration

jim stafford

Fall 2022 v2022-09-13: Built: 2022-12-07 06:12 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Review: Configuration Class
2.1. Separate @Configuration Class
3. Conditional Configuration
3.1. Property Value Condition Satisfied
3.2. Property Value Condition Not Satisfied
4. Two Primary Configuration Phases
5. Auto-Configuration
5.1. Supporting @ConfigurationProperties
5.2. Locating Auto Configuration Classes
5.3. META-INF/spring.factories Metadata File
5.4. Spring Boot 2.7 AutoConfiguration Changes
5.5. Example Auto-Configuration Module Source Tree
5.6. Auto-Configuration / Starter Roles/Relationships
5.7. Example Starter Module pom.xml
5.8. Example Starter Implementation Dependencies
5.9. Application Starter Dependency
5.10. Starter Brings in Pertinent Dependencies
6. Configured Application
6.1. Review: Unconditional Auto-Configuration Class
6.2. Review: Starter Module Default
6.3. Produced Default Starter Greeting
6.4. User-Application Supplies Property Details
7. Auto-Configuration Conflict
7.1. Review: Conditional @Bean Factory
7.2. Potential Conflict
7.3. @ConditionalOnMissingBean
7.4. Bean Conditional Example Output
8. Resource Conditional and Ordering
8.1. Registering Second Auto-Configuration Class
8.2. Resource Conditional Example Output
9. @Primary
9.1. @Primary Example Output
10. Class Conditions
10.1. Class Conditional Example
11. Excluding Auto Configurations

© © © 00 00 0 N O U b b W W~k ==

[N T N T N T N N T S S S e Y
W NN B O 00 00 00 & O U1 U1 U1 b b W W W N = = O

12. Debugging Auto Configurations
12.1. Conditions Evaluation Report
12.2. Conditions Evaluation Report Example
12.3. Condition Evaluation Report Results
12.4. Actuator Conditions
12.5. Activating Actuator Conditions
12.6. Actuator Environment
12.7. Actuator Links
12.8. Actuator Environment Report
12.9. Actuator Specific Property Source
12.10. More Actuator

13. Summary

24
24
24
25
25
25
26
27
27
28
28
29

Chapter 1. Introduction

Thus far we have focused on how to configure an application within the primary application
module, under fairly static conditions, and applied directly to a single application.

However, our application configuration will likely be required to be:

* dynamically determined - Application configurations commonly need to be dynamic based on
libraries present, properties defined, resources found, etc. at startup. For example, what
database will be used when in development, integration, or production? What security should
be enabled in development versus production areas?

* modularized and not repeated - Breaking the application down into separate components and
making these components reusable in multiple applications by physically breaking them into
separate modules is a good practice. However, that leaves us with the repeated responsibility to
configure the components reused. Many times there could be dozens of choices to make within
a component configuration and the application can be significantly simplified if an opinionated
configuration can be supplied based on the runtime environment of the module.

If you find yourself needing configurations determined dynamically at runtime or find yourself
solving a repeated problem and bundling that into a library shared by multiple applications, you
are going to want to master the concepts within Spring Boot’s Auto-configuration capability that
will be discussed here. Some of these Auto-configuraton capabilities mentioned can be placed
directly into the application while others are meant to be placed into separate Auto-configuration
modules called "starter" modules that can come with an opinionated, default way to configure the
component for use with as little work as possible.

1.1. Goals

The student will learn to:

* Enable/disable @Configuration classes and @Bean factories based on condition(s) at startup

* Create Auto-configuration/Starter module(s) that establish necessary dependencies and
conditionally supplies beans

» Resolve conflicts between alternate configurations

* Locate environment and condition details to debug Auto-configuration issues

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:
1. Enable a @Component, @Configuration class, or @Bean factory method based on the result of a
condition at startup
2. Create Spring Boot Auto-configuration/Starter module(s)
3. Bootstrap Auto-configuration classes into applications using a spring.factories metadata file

4. Create a conditional component based on the presence of a property value

Create a conditional component based on a missing component
Create a conditional component based on the presence of a class
Define a processing dependency order for Auto-configuration classes

Access textual debug information relative to conditions using the debug property

© ©® N o o«

Access web-based debug information relative to conditionals and properties using the Spring
Boot Actuator

Ref: Creating Your Own Auto-configuration

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-developing-auto-configuration

Chapter 2. Review: Configuration Class

As we have seen earlier, @Configuration classes are how we bootstrap an application using Java
classes. They are the modern alternative to the legacy XML definitions that basically do the same
thing — define and configure beans.

@Configuration classes can be the @SpringBootApplication class itself. This would be appropriate for
a small application.

Configuration supplied within @SpringBootApplication Class

//==> wraps @EnableAutoConfiguration
//==> wraps @SpringBootConfiguration
// ==> wraps @Configuration
public class SelfConfiguredApp {
public static final void main(String...args) {
SpringApplication.run(SelfConfiguredApp.class, args);

}

public Hello hello() {
return new StdOutHello("Application @Bean says Hey");

}

2.1. Separate @Configuration Class

@Configuration classes can be broken out into separate classes. This would be appropriate for larger
applications with distinct areas to be configured.

(proxyBeanMethods = false)
public class AConfigurationClass {

public Hello hello() {
return new StdOutHello("...");

}

@Configuration classes are commonly annotated with the proxyMethods=false
attribute that tells Spring it need not create extra proxy code to enforce normal,

o singleton return of the created instance to be shared by all callers since
@Configuration class instances are only called by Spring. The javadoc for the
annotation attribute describes the extra and unnecessary work saved.

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringBootConfiguration.html

Chapter 3. Conditional Configuration

We can make @Bean factory methods (or the @Component annotated class) and entire @Configuration
classes dependent on conditions found at startup. The following example uses the
@ConditionalOnProperty annotation to define a Hello bean based on the presence of the

hello.quiet property equaling the value true.

Property Condition Example

import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.context.annotation.Bean;

public class StarterConfiquredApp {
public static final void main(String...args) {
SpringApplication.run(StarterConfiguredApp.class, args);

}

(prefix="hello", name="quiet", havingValue="true") @®

public Hello quietHello() {
return new StdOutHello("(hello.quiet property condition set, Application @Bean

says hi)");
}
}

® @ConditionalOnProperty annotation used to define a Hello bean based on the presence of the
hello.quiet property equaling the value true

3.1. Property Value Condition Satisfied
The following is an example of the property being defined with the targeted value.
Property Value Condition Satisfied Result

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --hello.quiet=true @

(hello.quiet property condition set, Application @Bean says hi) World @

@ matching property supplied using command line

@ satisfies property condition in @SpringBootApplication

o The (parentheses) is trying to indicate a whisper. hello.quiet=true property turns
on this behavior.

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnProperty.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnProperty.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnProperty.html

3.2. Property Value Condition Not Satisfied

The following is an example of the property being missing. Since there is no Hello bean factory, we
encounter an error that we will look to solve using a separate Auto-configuration module.

Property Value Condition Not Satisfied

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar @M

kkkkkkhkkhkhhkkhkhkkhkkhkhkkhkhkkkrkkkx

APPLICATION FAILED TO START

kkkkkkhhkkhhkkhhkhkhhkhkhhhkhhkkrkkkx

Description:

Parameter @ of constructor in info.ejava.springboot.examples.app.AppCommand required a
bean of type
"info.ejava.examples.app.hello.Hello' that could not be found.

The following candidates were found but could not be injected: @
- Bean method 'quietHello' in 'StarterConfiguredApp' not loaded because
@ConditionalOnProperty (hello.quiet=true) did not find property 'quiet'

Action:
Consider revisiting the entries above or defining a bean of type
"info.ejava.examples.app.hello.Hello" in your configuration.

@ property either not specified or not specified with targeted value

@ property condition within @SpringBootApplication not satisfied

Chapter 4. Two Primary Configuration
Phases

Configuration processing within Spring Boot is broken into two primary phases:

1. User-defined configuration classes

o

o

processed first

part of the application module

> located through the use of a @ComponentScan (wrapped by @SpringBootApplication)

o

o

establish the base configuration for the application

fill in any fine-tuning details.

2. Auto-configuration classes

o

o

o

parsed second
outside the scope of the @ComponentScan
placed in separate modules, identified by metadata within those modules

enabled by application using @EnableAutoConfiguration (also
@SpringBootApplication)

provide defaults to fill in the reusable parts of the application

use User-defined configuration for details

wrapped

Chapter 5. Auto-Configuration

An Auto-configuration class is technically no different than any other @Configuration class except
that it is inspected after the User-defined @Configuration class(es) processing is complete and based
on being named in a META-INF/spring.factories descriptor. This alternate identification and second
pass processing allows the core application to make key directional and detailed decisions and
control conditions for the Auto-configuration class(es).

The following Auto-configuration class example defines an unconditional Hello bean factory that is
configured using a @ConfigurationProperties class.

Example Auto-Configuration Class

package info.ejava.examples.app.hello; @

(proxyBeanMethods = false)
(HelloProperties.class)
public class HelloAutoConfiguration {

®
public Hello hello(HelloProperties helloProperties) {
return new StdOutHello(helloProperties.getGreeting());

}

@ Example Auto-configuration class provides unconditional @Bean factory for Hello

@ this @Configuration package is outside the default scanning scope of @SpringBootApplication

Auto-Configuration Packages are Separate from Application

Auto-Configuration classes are designed to be outside the scope of the
@SpringBootApplication package scanning. Otherwise it would end up being a
normal @Configuration class and processed within the main application JAR pre-
processing.

package info.ejava.examples.app.config.auto;

A

package info.ejava.examples.app.hello; @

(proxyBeanMethods = false)
public class HelloAutoConfiguration {

@ app.hello is not under app.config.auto

5.1. Supporting @ConfigurationProperties

This particular @Bean factory defines the @ConfigurationProperties class to encapsulate the details of
configuring Hello. It supplies a default greeting making it optional for the User-defined

configuration to do anything.

Example Auto-Configuration Properties Class

("hello")

public class HelloProperties {

private String greeting = "HelloProperties default greeting says Hola!"; @

@ Value used if user-configuration does not specify a property value

5.2. Locating Auto Configuration Classes

Auto-configuration class(es) are registered with an entry within the META-INF/spring.factories file
of the Auto-configuration class’s JAR. This module is typically called an "auto-configuration".

Auto-configuration Module JAR

$ jar tf target/hello-starter-*-SNAPSHOT-bootexec.jar | egrep -v
'/$|maven|MANIFEST.MF'

META-INF/spring.factories @
META-INF/spring-configuration-metadata.json @
info/ejava/examples/app/hello/HelloAutoConfiguration.class
info/ejava/examples/app/hello/HelloProperties.class

@ "auto-configuration" dependency JAR supplies META-INF/spring.factories

@ @ConfigurationProperties class metadata generated by maven plugin for use by IDEs

It is common best-practice to host Auto-configuration classes in a separate module
r
O than the beans it configures. The Hello interface and Hello implementation(s)
w
comply with this convention and are housed in separate modules.

5.3. META-INF/spring.factories Metadata File

The Auto-configuraton classes are registered using the property name equaling the fully qualified
classname of the @EnableAutoConfiguration annotation and the value equaling the fully qualified
classname of the Auto-configuration class(es). Multiple classes can be specified separated by

commas as I will show later.

src/main/resources/META-INF/spring.factories

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
info.ejava.examples.app.hello.HelloAutoConfiguration @

@ Auto-configuration class metadata registration

5.4. Spring Boot 2.7 AutoConfiguration Changes

Spring Boot 2.7 has announced:

* a new @AutoConfiguration annotation that is meant to take the place of using @Configuration on
top-level classes

 the deprecation of META-INF/spring.factories in favor of META-INF/spring/
org.springframework.boot. autoconfigure.AutoConfiguration.imports

For backwards compatibility, entries in spring.factories will still be honored.

— Spring.io, Spring Boot 2.7.0 M2 Release Notes -- Changes to Auto-configuration

See Spring.io Examples

5.5. Example Auto-Configuration Module Source Tree

Our configuration and properties class—along with the spring.factories file get placed in a
separate module source tree.

Example Auto-Configuration Module Structure

pom. xml
src
‘-- main
|-- java
| '-- info
| ‘-- ejava
| ‘-~ examples
I ‘-~ app
| ‘-~ hello
| |-- HelloAutoConfiguration.java
| ‘-~ HelloProperties.java
‘-- resources
‘-~ META-INF

‘-- spring.factories

5.6. Auto-Configuration / Starter Roles/Relationships

Modules designed as starters can have varying designs with the following roles carried out:

» Auto-configuration classes that conditionally wire the application

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7.0-M2-Release-Notes#changes-to-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.developing-auto-configuration

* An opinionated starter with dependencies that trigger the Auto-configuration rules

Optional Grouping\

Optional Grouping'\

stamerl ______ | | Application

s A ~ .
¢ y N ~L
F N "“ e
F—’ I'L \1" S, .
autoconfigure Fo Y
META-INF/spring factories \ ‘1 spring-boot-starter
HelloAutoConfiguration.class : \
HelloProperties java)

4 L3

|

.

LS r. I

I » . rJ [
! “ 4 optional | [

5 '

1

\

; 1

A ! |
I Y 7 A |
: h-ﬁ T#’ k spring-boot-autoconfigure

. ello-iface , ;
+ Y optional | META-IMNF/spring factories
I'.'\ y'y / (AutoConfiguration classes)
i | ,I
~ [
S . i !.r’
= - | 1__!
hello-stdout

5.7. Example Starter Module pom.xml

The module is commonly termed a starter and will have dependencies on

* spring-boot-starter

* the service interface

* one or more service implementation(s) and their implementation dependencies

Example Auto-Configuration pom.xml Snippet

<groupId>info.ejava.examples.app</groupld>
<artifactId>hello-starter</artifactId>

<dependencies>
<dependency> @

<groupld>org.springframework.boot</groupId>

<artifactId>spring-boot-starter</artifactId>
</dependency>

<!-- commonly declares dependency on interface module -->
<dependency> @

<groupId>${project.groupIld}</groupId>

10

<artifactId>hello-service-api</artifactId>
<version>${project.version}</version>

</dependency> @
<!-- hello implementation dependency -->

<dependency>
<groupId>${project.groupIld}</groupId>
<artifactId>hello-service-stdout</artifactId>
<version>${project.version}</version>

</dependency>

@ dependency on spring-boot-starter define classes pertinent to Auto-configuration

@ starter modules commonly define dependencies on interface and implementation modules

5.8. Example Starter Implementation Dependencies

The rest of the dependencies have nothing specific to do with Auto-configuration or starter modules
and are there to support the module implementation.

Example Starter pom.xml Implementation Dependencies

<dependency> @®
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<scope>provided</scope>

</dependency>

<dependency> @
<groupId>javax.validation</groupId>
<artifactId>validation-api</artifactId>

</dependency>

<!-- creates a JSON metadata file describing @ConfigurationProperties -->

<dependency> @
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>

<optional>true</optional>
</dependency>
</dependencies>

@ these dependencies are part of optional implementation detail having nothing to do with Auto-

configuration topic

5.9. Application Starter Dependency

The application module declares dependency on the starter module containing or having a
dependency on the Auto-configuration artifacts.

Application Module Dependency on Starter Module

<!-- takes care of initializing Hello Service for us to inject -->

11

<dependency>
<groupId>${project.groupIld}</groupId> @
<artifactId>hello-starter</artifactId>
<version>${project.version}</version> @
</dependency>

@ For this example, the application and starter modules share the same groupId and version and
leverage a ${project} variable to simplify the expression. That will likely not be the case with
most starter module dependencies and will need to be spelled out.

5.10. Starter Brings in Pertinent Dependencies

The starter dependency brings in the Hello Service interface, targeted implementation(s), and some
implementation dependencies.

Application Module Transitive Dependencies from Starter
$ mvn dependency:tree

[INFO] +- info.ejava.examples.app:hello-starter:jar:6.0.7-SNAPSHOT:compile

[INFO] | +- info.ejava.examples.app:hello-service-api:jar:6.0.1-SNAPSHOT:compile
[INFO] | +- info.ejava.examples.app:hello-service-stdout:jar:6.0.1-SNAPSHOT:compile
[INFO] | +- org.projectlombok:lombok:jar:1.18.10:provided

[INFO] | \- org.springframework.boot:spring-boot-starter-validation:jar:2.7.0:compile

12

Chapter 6. Configured Application

The example application contains a component that requests the greeter implementation to say

hello to "World".

Injection Point for Auto-configuration Bean
import lombok.RequiredArgsConstructor;

@

public class AppCommand implements CommandLineRunner {
private final Hello greeter;

public void run(String... args) throws Exception {
greeter.sayHello("World");

}

® lombok is being used to provide the constructor injection

6.1. Review: Unconditional Auto-Configuration Class

This starter dependency is bringing in a @Bean factory to construct an implementation of Hello.

Example Auto-Configuration Class
package info.ejava.examples.app.hello;

(proxyBeanMethods = false)
(HelloProperties.class)

public class HelloAutoConfiguration {

public Hello hello(HelloProperties helloProperties) { @
return new StdOutHello(helloProperties.getGreeting());

}

@ Example Auto-configuration configured by HelloProperties

6.2. Review: Starter Module Default

The starter dependency brings in an Auto-configuration class that instantiates a StdOutHello

implementation configured by a HelloProperties class.

Review: Auto-configuration class * Configuration Properties

("hello")

13

public class HelloProperties {

private String greeting = "HelloProperties default greeting says Hola!"; @

® hello.greeting default defined in @ConfigurationProperties class of starter/autoconfigure
module

6.3. Produced Default Starter Greeting

This produces the default greeting

Example Application Execution without Satisfying Property Condition
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar

HelloProperties default greeting says Hola! World

6.4. User-Application Supplies Property Details

Since the Auto-configuration class is using a properties class, we can define properties (aka "the
details") in the main application for the dependency module to use.

application.properties
#appconfig-autoconfig-example application.properties

#uncomment to use this greeting
hello.greeting: application.properties Says - Hey

Runtime Output with hello.greeting Property Defined
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar
application.properties Says - Hey World @

@ auto-configured implementation using user-defined property

14

Chapter 7. Auto-Configuration Conflict

7.1. Review: Conditional @Bean Factory

We saw how we could make a @Bean factory in the User-defined application module conditional (on
the value of a property).

Conditional @Bean Factory

public class StarterConfiguredApp {

(prefix = "hello", name = "quiet", havingValue = "true")
public Hello quietHello() {
return new StdOutHello("(hello.quiet property condition set, Application @Bean
says hi)");
}
}

7.2. Potential Conflict

We also saw how to define @Bean factory in an Auto-configuration class brought in by starter
module. We now have a condition where the two can cause an ambiguity error that we need to
account for.

Example Output with Bean Factory Ambiguity

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --hello.quiet=true @

kkkkkkhhkkhhhkhkhkkhhkhkhkhkhhkkrkkk

APPLICATION FAILED TO START

hkkkhkkhhkhhhkrhkkhhhkhhhrhkrkkkx

Description:

Parameter @ of constructor in info.ejava.examples.app.config.auto.AppCommand
required a single bean, but 2 were found:
- quietHello: defined by method 'quietHello' in
info.ejava.examples.app.config.auto.StarterConfiguredApp
- hello: defined by method 'hello' in class path resource
[info/ejava/examples/app/hello/HelloAutoConfiguration.class]

Action:
Consider marking one of the beans as @Primary, updating the consumer to accept

multiple beans,
or using @Qualifier to identify the bean that should be consumed

15

@ Supplying the hello.quiet=true property value causes two @Bean factories to chose from

7.3. @ConditionalOnMissingBean

One way to solve the ambiguity is by using the @ConditionalOnMissingBean annotation — which
defines a condition based on the absence of a bean. Most conditional annotations can be used in
both the application and autoconfigure modules. However, the @ConditionalOnMissingBean and its
sibling @ConditionalOnBean are special and meant to be used with Auto-configuration classes in
the autoconfigure modules.

Since the Auto-configuration classes are processed after the User-defined classes —there is a clear
point to determine whether a User-defined @Bean factory does or does not exist. Any other use of
these two annotations requires careful ordering and is not recommended.

@ConditionOnMissingBean Auto-Configuration Example

import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;

(proxyBeanMethods = false)
(HelloProperties.class)
public class HelloAutoConfiguration {

0]

public Hello hello(HelloProperties helloProperties) {
return new StdOutHello(helloProperties.getGreeting());

}

@ @ConditionOnMissingBean causes Auto-configured @Bean method to be inactive when Hello bean
already exists

7.4. Bean Conditional Example Output

With the @ConditionalOnMissingBean defined on the Auto-configuration class and the property
condition satisfied, we get the bean injected from the User-defined @Bean factory.

Runtime with Property Condition Satisfied
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --hello.quiet=true

(hello.quiet property condition set, Application @Bean says hi) World

With the property condition not satisfied, we get the bean injected from the Auto-configuration
@Bean factory. Wahoo!

Runtime with Property Condition Not Satisfied

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar

16

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnMissingBean.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnBean.html

application.properties Says - Hey World

17

Chapter 8. Resource Conditional and
Ordering

We can also define a condition based on the presence of a resource on the filesystem or classpath
using the @ConditionOnResource. The following example satisfies the condition if the file
hello.properties exists in the current directory. We are also going to order our Auto-configured
classes with the help of the @AutoConfigureBefore annotation. There is a sibling
@AutoConfigureAfter annotation as well as a AutoConfigureOrder we could have used.

Example Condition on File Present and Evaluation Ordering

import org.springframework.boot.autoconfigure.AutoConfigureBefore;
import org.springframework.boot.autoconfigure.condition.ConditionalOnResource;

(resources = "file:./hello.properties") @
(HelloAutoConfiguration.class) @
public class HelloResourceAutoConfiguration {

public Hello resourceHello() {
return new StdOutHello("hello.properties exists says hello");

}

@ Auto-configured class satisfied only when file hello.properties present

@ This Auto-configuration class is processed prior to HelloAutoConfiguration

8.1. Registering Second Auto-Configuration Class

This second Auto-configuration class is being provided in the same, hello-starter module, so we
need to update the Auto-configuration property within the META-INF/spring.factories file. We do
this by listing the full classnames of each Auto-configuration class, separated by commacs).

hello-starter spring.factories
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\

info.ejava.examples.app.hello.HelloAutoConfiguration, \ @
info.ejava.examples.app.hello.HelloResourceAutoConfiguration

@ comma separated

8.2. Resource Conditional Example Output

The following execution with hello.properties present in the current directory satisfies the
condition, causes the @Bean factory from HelloAutoConfiguration to be skipped because the bean
already exists.

18

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnResource.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/AutoConfigureBefore.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/AutoConfigureAfter.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/AutoConfigureAfter.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/AutoConfigureOrder.html

Resource Condition Satisfied
$ echo hello.greeting: hello.properties exists says hello World > hello.properties
$ cat hello.properties
hello.greeting: hello.properties exists says hello World
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar
hello.properties exists says hello World

* when property file is not present

o @Bean factory from HelloAutoConfiguration used since neither property or resource-based
conditions satisfied

Resource Condition Not Satisfied

$ rm hello.properties
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar

application.properties Says - Hey World

19

Chapter 9. @Primary

In the previous example I purposely put ourselves in a familiar situation to demonstrate an
alternative solution if appropriate. We will re-enter the ambiguous match state if we supply a
hello.properties file and the hello.quiet=true property value.

Example Ambiguous Conditional Match

$ touch hello.properties
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --hello.quiet=true

kkkkhkkhhkkhhkkhhkkhhkhkhhhkhhkkrkkkx

APPLICATION FAILED TO START

hkkhkkhhkhhhkrhkhhhhhhhrhkrkkkx

Description:

Parameter @ of constructor in info.ejava.examples.app.config.auto.AppCommand required
a single bean,
but 2 were found:
- quietHello: defined by method 'quietHello' in
info.ejava.examples.app.config.auto.StarterConfiguredApp
- resourceHello: defined by method 'resourceHello' in class path resource
[info/ejava/examples/app/hello/HelloResourceAutoConfiguration.class]

Action:

Consider marking one of the beans as @Primary, updating the consumer to accept
multiple beans,
or using @Qualifier to identify the bean that should be consumed

This time —to correct —we want the resource-based @Bean factory to take priority so we add the
@Primary annotation to our highest priority @Bean factory. If there is a conflict — this one will be
used.

import org.springframework.context.annotation.Primary;

(resources = "file:./hello.properties")
(HelloAutoConfiguration.class)
public class HelloResourceAutoConfiguration {

//chosen when there is a conflict
public Hello resourceHello() {
return new StdOutHello("hello.properties exists says hello");

}

20

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Primary.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Primary.html

9.1. @Primary Example Output

This time we avoid the error with the same conditions met and one of the @Bean factories listed as

@Primary to resolve the conflict.

Ambiguous Choice Resolved thru @Primary

$ cat hello.properties
hello.greeting: hello.properties exists says hello World
$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --hello.quiet=true @

hello.properties exists says hello World

@ @Primary condition satisfied overrides application @Bean condition

21

Chapter 10. Class Conditions

There are many conditions we can add to our @Configuration class or methods. However, there is an
important difference between the two.

* class conditional annotations prevent the entire class from loading when not satisfied

» @Bean factory conditional annotations allow the class to load but prevent the method from being

called when not satisfied

This works for missing classes too! Spring Boot parses the conditional class using ASM to detect and
then evaluate conditions prior to allowing the class to be loaded into the JVM. Otherwise we would
get a ClassNotFoundException for the import of a class we are trying to base our condition on.

10.1. Class Conditional Example

In the following example, I am adding @ConditionalOnClass annotation to prevent the class from
being loaded if the implementation class does not exist on the classpath.

import info.ejava.examples.app.hello.stdout.StdOutHello; @
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;

(proxyBeanMethods = false)
(StdOutHello.class) @
(HelloProperties.class)
public class HelloAutoConfiguration {

public Hello hello(HelloProperties helloProperties) {
return new StdOutHello(helloProperties.getGreeting()); @
}

@ StdOutHello is the implementation instantiated by the @Bean factory method

@ HelloAutoConfiguration.class will not get loaded if StdOutHello.class does not exist

The @ConditionOnClass accepts either a class or string expression of the fully qualified classname.
The sibling @ConditionalOnMissingClass accepts only the string form of the classname.

(r') Spring Boot Autoconfigure module contains many examples of real Auto-
- configuration classes

22

https://asm.ow2.io/
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnClass.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnMissingClass.html
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure

Chapter 11. Excluding Auto Configurations

We can turn off certain Auto-configured classes using the

* exclude attribute of the @EnableAutoConfiguration annotation

* exclude attribute of the @SpringBootApplication annotation which wraps the
@EnableAutoConfiguration annotation

@SpringBootApplication(exclude = {})
// ==> wraps @EnableAutoConfiguration(exclude={})
public class StarterConfiguredApp {

}

23

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html#exclude--
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html#exclude--

Chapter 12. Debugging Auto Configurations

With all these conditional User-defined and Auto-configurations going on, it is easy to get lost or
make a mistake. There are two primary tools that can be used to expose the details of the
conditional configuration decisions.

12.1. Conditions Evaluation Report

It is easy to get a simplistic textual report of positive and negative condition evaluation matches by
adding a debug property to the configuration. This can be done by adding --debug or -Ddebug to the
command line.

The following output shows only the positive and negative matching conditions relevant to our
example. There is plently more in the full output.

12.2. Conditions Evaluation Report Example

Conditions Evaluation Report Snippet

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar --debug | less

HelloAutoConfiguration matched:
- @ConditionalOnClass found required class
"info.ejava.examples.app.hello.stdout.StdOutHello" (OnClassCondition)

HelloAutoConfiguration#hello matched:
- @ConditionalOnBean (types: info.ejava.examples.app.hello.Hello;
SearchStrategy: all) did not find any beans (OnBeanCondition)

Negative matches: @

HelloResourceAutoConfiguration:
Did not match:
- @ConditionalOnResource did not find resource 'file:./hello.properties’
(OnResourceCondition)

StarterConfiguredApp#quietHello:
Did not match:
- @ConditionalOnProperty (hello.quiet=true) did not find property 'quiet
(OnPropertyCondition)

@ Positive matches show which conditionals are activated and why

24

@ Negative matches show which conditionals are not activated and why

12.3. Condition Evaluation Report Results

The report shows us that

* HelloAutoConfiguration class was enabled because StdOutHello class was present

* hello @Bean factory method of HelloAutoConfiguration class was enabled because no other beans
were located

 entire HelloResourceAutoConfiguration class was not loaded because file hello.properties was
not present

* quietHello @Bean factory method of application class was not activated because hello.quiet
property was not found

12.4. Actuator Conditions

We can also get a look at the conditionals while the application is running for Web applications
using the Spring Boot Actuator. However, doing so requires that we transition our application from
a command to a Web application. Luckily this can be done technically by simply changing our
starter in the pom.xml file.

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<l-- <artifactId>spring-boot-starter</artifactId>-->
</dependency>

We also need to add a dependency on the spring-boot-starter-actuator module.

<!-- added to inspect env -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

12.5. Activating Actuator Conditions

The Actuator, by default, will not expose any information without being configured to do so. We can
show a JSON version of the Conditions Evaluation Report by adding the
management.endpoints.web.exposure.include equal to the value conditions. I will do that on the
command line here. Normally it would be in a profile-specific properties file appropriate for
exposing this information.

25

Enable Actuator Conditions Report to be Exposed

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar \
--management.endpoints.web.exposure.include=conditions

The Conditions Evaluation Report is available at the following URL: http://localhost:8080/actuator/
conditions.

Example Actuator Conditions Report

{

"contexts": {
"application": {
"positiveMatches": {
"HelloAutoConfiguration": [{
"condition": "OnClassCondition",
"message": "@ConditionalOnClass found required class
"info.ejava.examples.app.hello.stdout.StdOutHello""
H,
"HelloAutoConfiguration#hello": [{
"condition": "OnBeanCondition",
"message”: "@ConditionalOnBean (types:
info.ejava.examples.app.hello.Hello; SearchStrategy: all) did not find any beans"
H,

"negativeMatches": {
"StarterConfiguredApp#quietHello": {
"notMatched": [{
"condition": "OnPropertyCondition",
"message”: "@ConditionalOnProperty (hello.quiet=true) did not find
property 'quiet'"
H,
"matched": []
I
"HelloResourceAutoConfiguration": {
"notMatched": [{
"condition": "OnResourceCondition",
"message": "@ConditionalOnResource did not find resource
"file:./hello.properties"'"”
.
"matched": []

}I

12.6. Actuator Environment

It can also be helpful to inspect the environment to determine the value of properties and which
source of properties is being used. To see that information, we add env to the exposure.include

26

http://localhost:8080/actuator/conditions
http://localhost:8080/actuator/conditions

property.

Enable Actuator Conditions Report and Environment to be Exposed

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar \
--management.endpoints.web.exposure.include=conditions,env

12.7. Actuator Links

This adds a full /env endpoint and a view specific /env/{property} endpoint to see information for a
specific property name. The available Actuator links are available at http://localhost:8080/actuator.

Actuator Links
{
_links: {
self: {
href: "http://localhost:8080/actuator”,
templated: false
¥

conditions: {
href: "http://localhost:8080/actuator/conditions",
templated: false

Ifs
env: {
href: "http://localhost:8080/actuator/env",
templated: false
Iy
env-toMatch: {
href: "http://localhost:8080/actuator/env/{toMatch}",
templated: true
}
}

12.8. Actuator Environment Report

The Actuator Environment Report is available at http://localhost:8080/actuator/env.

Example Actuator Environment Report

{
activeProfiles: [1,
propertySources: [{
name: "server.ports",
properties: {
local.server.port: {
value: 8080

}

27

http://localhost:8080/actuator
http://localhost:8080/actuator/env

1
{
name: "commandlLineArgs",
properties: {
management.endpoints.web.exposure.include: {
value: "conditions,env"
}
¥
},

12.9. Actuator Specific Property Source

The source of a specific property and its defined value is available below the /actuator/env URI
such that the hello.greeting property is located at http://localhost:8080/actuator/env/hello.greeting.

Example Actuator Environment Report for Specific Property

{
property: {
source: "applicationConfig: [classpath:/application.properties]”,
value: "application.properties Says - Hey"

}I

12.10. More Actuator

We can explore some of the other Actuator endpoints by changing the include property to * and
revisiting the main actuator endpoint. Actuator Documentation is available on the web.

Expose All Actuator Endpoints

$ java -jar target/appconfig-autoconfig-*-SNAPSHOT-bootexec.jar \
--management.endpoints.web.exposure.include="*" @

@ double quotes (") being used to escape * special character on command line

28

http://localhost:8080/actuator/env/hello.greeting
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-enabling

Chapter 13. Summary

In this module we:
* Defined conditions for @Configuration classes and @Bean factory methods that are evaluated at
runtime startup
* Placed User-defined conditions, which are evaluated first, in with with application module

* Placed Auto-configuration classes in separate starter module to automatically bootstrap
applications with specific capabilities

* Added conflict resolution and ordering to conditions to avoid ambiguous matches

» Discovered how class conditions can help prevent entire @Configuration classes from being
loaded and disrupt the application because an optional class is missing

* Learned how to debug conditions and visualize the runtime environment through use of the
debug property or by using the Actuator for web applications

29

	Auto Configuration
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Review: Configuration Class
	2.1. Separate @Configuration Class

	Chapter 3. Conditional Configuration
	3.1. Property Value Condition Satisfied
	3.2. Property Value Condition Not Satisfied

	Chapter 4. Two Primary Configuration Phases
	Chapter 5. Auto-Configuration
	5.1. Supporting @ConfigurationProperties
	5.2. Locating Auto Configuration Classes
	5.3. META-INF/spring.factories Metadata File
	5.4. Spring Boot 2.7 AutoConfiguration Changes
	5.5. Example Auto-Configuration Module Source Tree
	5.6. Auto-Configuration / Starter Roles/Relationships
	5.7. Example Starter Module pom.xml
	5.8. Example Starter Implementation Dependencies
	5.9. Application Starter Dependency
	5.10. Starter Brings in Pertinent Dependencies

	Chapter 6. Configured Application
	6.1. Review: Unconditional Auto-Configuration Class
	6.2. Review: Starter Module Default
	6.3. Produced Default Starter Greeting
	6.4. User-Application Supplies Property Details

	Chapter 7. Auto-Configuration Conflict
	7.1. Review: Conditional @Bean Factory
	7.2. Potential Conflict
	7.3. @ConditionalOnMissingBean
	7.4. Bean Conditional Example Output

	Chapter 8. Resource Conditional and Ordering
	8.1. Registering Second Auto-Configuration Class
	8.2. Resource Conditional Example Output

	Chapter 9. @Primary
	9.1. @Primary Example Output

	Chapter 10. Class Conditions
	10.1. Class Conditional Example

	Chapter 11. Excluding Auto Configurations
	Chapter 12. Debugging Auto Configurations
	12.1. Conditions Evaluation Report
	12.2. Conditions Evaluation Report Example
	12.3. Condition Evaluation Report Results
	12.4. Actuator Conditions
	12.5. Activating Actuator Conditions
	12.6. Actuator Environment
	12.7. Actuator Links
	12.8. Actuator Environment Report
	12.9. Actuator Specific Property Source
	12.10. More Actuator

	Chapter 13. Summary

