Authorization

jim stafford

Fall 2022 v2020-07-13: Built: 2022-12-07 06:15 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Authorities, Roles, Permissions
3. Authorization Constraint Types
3.1. Path-based Constraints
3.2. Annotation-based Constraints
4. Setup
4.1. Who Am I Controller
4.2. Demonstration Users
4.3. Core Security FilterChain Setup
4.4. Controller Operations
5. Path-based Authorizations
5.1. Path-based Role Authorization Constraints
5.2. Example Path-based Role Authorization (Sam)
5.3. Example Path-based Role Authorization (Woody)
6. Path-based Authority Permission Constraints
6.1. Path-based Authority Permission (Norm)
6.2. Path-based Authority Permission (Frasier)
6.3. Path-based Authority Permission (Sam and Woody)
6.4. Other Path Constraints
6.5. Other Path Constraints Usage
7. Authorization
7.1. Review: FilterSecurityInterceptor At End of Chain
7.2. Attempt Authorization Call
7.3. FilterSecurityInterceptor Calls
7.4. AccessDecisionManager
7.5. Assigning Custom AccessDecisionManager
7.6. AccessDecisionVoter
8. Role Inheritance
8.1. Role Inheritance Definition
9. @Secured
9.1. Enabling @Secured Annotations
9.2. @Secured Annotation
9.3. @Secured Annotation Checks
9.4. @Secured Many Roles
9.5. @Secured Only Processing Roles
9.6. @Secured Does Not Support Role Inheritance

© © © 9 9 39 O O bk W W N R =

N DN DN DN DN DN DN === === =R R
N = = =2 O O O O O J 9 O U b b b DN NN === O

10. Controller Advice
10.1. AccessDeniedException Exception Handler
10.2. AccessDeniedException Exception Result
11. JSR-250
11.1. Enabling JSR-250
11.2. @RolesAllowed Annotation
11.3. @RolesAllowed Annotation Checks
11.4. Multiple Roles
11.5. Multiple Role Check
11.6. JSR-250 Does not Support Non-Role Authorities
12. Expressions
12.1. Expression Role Constraint
12.2. Expression Role Constraint Checks
12.3. Expressions Support Permissions and Role Inheritance
12.4. Supports Permissions and Boolean Logic

13. Summary

23
23
24
25
25
25
25
26
26
26
28
28
28
29
29
31

Chapter 1. Introduction

We have spent a significant amount of time to date making sure we are identifying the caller, how
to identify the caller, restricting access based on being properly authenticated, and the
management of multiple users. In this lecture we are going to focus on expanding authorization
constraints to both roles and permission-based authorities.

1.1. Goals

You will learn:

* the purpose of authorities, roles, and permissions
* how to express authorization constraints using URI-based and annotation-based constraints
* how the enforcement of the constraints is accomplished

* how to potentially customize the enforcement of constraints

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1. define the purpose of a role-based and permission-based authority

2. identify how to construct an AccessDecisionManager and supply customized AccessDecisionVoter
classes

implement URI Path-based authorization constraints
implement annotation-based authorization constraints

implement role inheritance

S

implement an AccessDeniedException controller advice to hide necessary stack trace information
and provide useful error information to the caller

7. identify the detailed capability of expression-based constraints to be able to handle very
intricate situations

Chapter 2. Authorities, Roles, Permissions

An authority is a general term used for a value that is granular enough to determine whether a user
will be granted access to a resource. There are different techniques for slicing up authorities to
match the security requirements of the application. Spring uses roles and permissions as types of
authorities.

A role is a course-grain authority assigned to the type of user accessing the system and the
prototypical uses that they perform. For example ROLE_ADMIN, ROLE_CLERK, or ROLE_CUSTOMER
are relative to the roles in a business application.

A permission is a more fine-grain authority that describes the action being performed versus the
role of the wuser. For example "PRICE_CHECK", "PRICE_MODIFY", "HOURS_GET", and
"HOURS_MODIFY" are relative to the actions in a business application.

No matter which is being represented by the authority value, Spring Security looks to grant or deny
access to a user based on their assigned authorities and the rules expressed to protect the resources

accessed.
@UserDetaﬂs authorities 1y @GranredAm.hon‘ty
authorty : Sting \
«Role» «Rolex» «Permission» «Permissions»
ADMIN CLERK HOURS_CHECK PRICE_CHECK
authority = ROLE_ADMIN authority = ROLE_CLERK authority = HOURS_CHECK authority = PRICE_CHECK

«Role» «Permissions» «Permissions
CUSTOMER HOURS_MODIFY PRICE_MODIFY

authority = ROLE_CUSTOMER authority = HOURS_MODIFY authority = PRICE_MODIFY

Figure 1. Role and Permission Authorities

Spring represents both roles and permissions using a GrantedAuthority class with an authority
string carrying the value. Role authority values have, by default, a "ROLE_" prefix, which is a
configurable value. Permissions/generic authorities do not have a prefix value. Aside from that,
they look very similar but are not always treated equally.

Spring refers to authorities with ROLE_ prefix as "roles” when the prefix is stripped
@ away and anything with the raw value as "authorities”. ROLE_ADMIN authority
t represents an ADMIN role. PRICE_CHECK permission is a PRICE_CHECK authority:.

Chapter 3. Authorization Constraint Types

There are two primary ways we can express authorization constraints within Spring: path-based
and annotation-based.

3.1. Path-based Constraints

Path-based constraints are specific to web applications and controller operations since the
constraint is expressed against a URI pattern. We define path-based authorizations using the same
HttpSecurity builder we used with authentication. We can use either the
WebSecurityConfigurerAdapter (deprecated) or Component-based approaches — but not both.

* WebSecurityConfigurer Approach

Authn and Authz HttpSecurity Configuration

(9)

public static class APIConfiguration extends WebSecurityConfigurerAdapter {
private final UserDetailsService jdbcUserDetailsService;

public void configure(WebSecurity web) throws Exception { ...}

protected void configure(HttpSecurity http) throws Exception {
http.requestMatchers(cfg->cfg.antMatchers("/api/**"));
//...
http.httpBasic();
//remaining authn and upcoming authz goes here

* Component-based Approach

Authn and Authz HttpSecurity Configuration

public WebSecurityCustomizer authzStaticResources() {
return (web) -> web.ignoring().antMatchers("/content/**");

}
(0)

public SecurityFilterChain authzSecurityFilters(HttpSecurity http) throws Exception
{

http.requestMatchers(cfg->cfg.antMatchers("/api/**"));

//...

http.httpBasic();

//remaining authn and upcoming authz goes here

return http.build();
}

The first example below shows a URI path restricted to the ADMIN role. The second example shows a
URI path restricted to the ROLE_ADMIN, or ROLE_CLERK, or PRICE_CHECK authorities.

g It is worth saying multiple times. Pay attention to the use of the terms "role" and
"authority" within Spring security. ROLE_X is a "ROLE_X" authority and a "X" role.

Example Path-based Constraints

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/admin/**")
.hasRole("ADMIN")); @
http.authorizeRequests(cfg->cfqg.antMatchers(HttpMethod.GET,
"/api/authorities/paths/price")
.hasAnyAuthority("PRICE_CHECK", "ROLE_ADMIN", "ROLE_CLERK")); @

@ ROLE_ prefix automatically added to role authorities

@ ROLE_ prefix must be manually added when expressed as a generic authority

Out-of-the-box, path-based annotations support role inheritance, roles, and permission-based
constraints. Path-based constraints also support Spring Expression Language (SpEL).

3.2. Annotation-based Constraints

Annotation-based constraints are not directly related to web applications and not associated with
URIs. Annotations are placed on the classes and/or methods they are meant to impact. The
processing of those annotations has default, built-in behavior that we can augment and modify. The
descriptions here are constrained to out-of-the-box capability before trying to adjust anything.

There are three annotation options in Spring:

» @Secured — this was the original, basic annotation Spring used to annotate access controls for
classes and/or methods. Out-of-the-box, this annotation only supports roles and does not
support role inheritance.

("ROLE_ADMIN") @
(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(

@ ROLE_ prefix must be included in string

* JSR 250 —this is an industry standard API for expressing access controls using annotations for
classes and/or methods. This is also adopted by JakartaEE. Out-of-the-box, this too only supports
roles and does not support role inheritance.

("ROLE_ADMIN") @
(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(

https://docs.spring.io/spring-security/site/docs/current/reference/html5/#el-access

@ ROLE_ prefix must be included in string

» expressions — this annotation capability is based on the powerful Spring Expression Language
(SpEL) that allows for ANDing and ORing of multiple values and includes inspection of
parameters and current context. It does provide support for role inheritance.

@PreAuthorize("hasRole('ADMIN')") @
@GetMapping(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(

@PreAuthorize("hasAnyRole("ADMIN', 'CLERK') or hasAuthority('PRICE_CHECK')") @
@GetMapping(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> checkPrice(

@ ROLE_ prefix automatically added to role authorities

@ ROLE_ prefix not added to generic authority references

Chapter 4. Setup

The bulk of this lecture will be demonstrating the different techniques for expressing authorization
constraints. To do this, I have created four controllers — configured using each technique and an
additional whoAmI controller to return a string indicating the name of the caller and their

authorities.

4.1. Who Am I Controller

To help us demonstrate authorities, I have added a controller to the application that will accept an
injected user and return a string that describes who called.

WhoAmlI Controller

("/api/whoAmI")
public class WhoAmIController {
(produces={MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> getCallerInfo(
UserDetails user) { @

List<?> values = (user!=null) ?
List.of(user.getUsername(), user.getAuthorities()) :
List.of ("null");

String text = StringUtils.join(values);

ResponseEntity<String> response = ResponseEntity.ok(text);
return response;

@ UserDetails of authenticated caller injected into method call
The controller will return the following when called without credentials.

Anonymous Call

$ curl http://localhost:8080/api/whoAmI
[null]

The controller will return the following when called with credentials

Authenticated Call

$ curl http://localhost:8080/api/whoAmI -u frasier:password
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

4.2. Demonstration Users

Our user database has been populated with the following users. All have an assigned role (Roles all
start with ROLE_ prefix). One (frasier) has an assigned permission.

insert into authorities(username,
insert into authorities(username,

insert into authorities(username,
insert into authorities(username,

insert into authorities(username,
insert into authorities(username,
insert into authorities(username,
insert into authorities(username,

authority) values('sam', 'ROLE_ADMIN');
authority) values('rebecca', "ROLE_ADMIN');

authority) values('woody', '"ROLE_CLERK");
authority) values('carla', 'ROLE_CLERK");

authority) values('norm', 'ROLE_CUSTOMER");
authority) values('cliff', 'ROLE_CUSTOMER");
authority) values('frasier', '"ROLE_CUSTOMER");
authority) values('frasier', 'PRICE_CHECK'); @

@ frasier is assigned a (non-role) permission

4.3. Core Security FilterChain Setup

The following shows the initial/core SecurityFilterChain setup carried over from earlier examples.
We will add to this in a moment.

Core SecurityFilterChain Setup

//HttpSecurity http
http.httpBasic(cfg->cfg.realmName("AuthzExample"));
http.formLogin(cfg->cfg.disable());

http.

headers(cfg->{

cfg.xssProtection().disable();
cfg.frameOptions().disable();

});

http.
http.
http.

http.

csrf(cfg->cfg.disable());

cors(cfg->new AuthzCorsConfigurationSource());
sessionManagement(cfg->cfg
.sessionCreationPolicy(SessionCreationPolicy.STATELESS));

authorizeRequests(cfg->cfg.antMatchers(

"/api/whoami",

"/api/authorities/paths/anonymous/**")

.permitAll());

//more ...

4.4. Controller Operations

The controllers in this overall example will accept API requests and delegate the call to the
WhoAmlIController. Many of the operations look like the snippet example below —but with a

different URI.

PathAuthoritiesController Snippet

@RestController

@RequestMapping("/api/authorities/paths")

@RequiredArgsConstructor

public class PathAuthoritiesController {
private final WhoAmIController whoAmI; @

@GetMapping(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(
@AuthenticationPrincipal UserDetails user) {
return whoAmI.getCallerInfo(user); @

@ whoAmlI controller injected into each controller to provide consistent response with username
and authorities

@ API-invoked controller delegates to whoAmlI controller along with injected UserDetails

Chapter 5. Path-based Authorizations

In this example, I will demonstrate how to apply security constraints on controller methods based
on the URI used to invoke them. This is very similar to the security constraints of legacy servlet
applications.

The following snippet shows a summary of the URIs in the controller we will be implementing.

Controller URI Summary Snippet

("/api/authorities/paths")

(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "clerk", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "customer", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "authn", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "anonymous", produces = {MediaType.TEXT_PLAIN_VALUE})
(path = "nobody", produces = {MediaType.TEXT_PLAIN_VALUE})

5.1. Path-based Role Authorization Constraints

We have the option to apply path-based authorization constraints using roles. The following
example locks down three URIs to one or more roles each.

Example Path Role Authorization Constraints

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/admin/**")
.hasRole("ADMIN")); @®

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/clerk/**")
.hasAnyRole("ADMIN", "CLERK")); @

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/customer/**")
.hasAnyRole("CUSTOMER")); ®

@ admin URI may only be called by callers having role ADMIN (or ROLE_ADMIN authority)

@ clerk URI may only be called by callers having either the ADMIN or CLERK roles (or ROLE_ADMIN or
ROLE_CLERK authorities)

® customer URI may only be called by callers having the role CUSTOMER (or ROLE_CUSTOMER authority)

5.2. Example Path-based Role Authorization (Sam)

The following is an example set of calls for sam, one of our users with role ADMIN. Remember that
role ADMIN is basically the same as saying authority ROLE_ADMIN.

$ curl http://localhost:8080/api/authorities/paths/admin -u sam:password M

[sam, [ROLE_ADMINT]

$ curl http://localhost:8080/api/authorities/paths/clerk -u sam:password @
[sam, [ROLE_ADMIN]]

$ curl http://localhost:8080/api/authorities/paths/customer -u sam:password @
{"timestamp":"2020-07-14T715:12:25.927+00:00", "status":403,"error":"Forbidden",

"message":"Forbidden","path":"/api/authorities/paths/customer"}

@ sam has ROLE_ADMIN authority, so admin URI can be called
@ sam has ROLE_ADMIN authority and clerk URI allows both roles ADMIN and CLERK

® sam lacks role CUSTOMER required to call customer URI and is rejected with 403/Forbidden error

5.3. Example Path-based Role Authorization (Woody)

The following is an example set of calls for woody, one of our users with role CLERK.

$ curl http://localhost:8080/api/authorities/paths/admin -u woody:password @
{"timestamp":"2020-07-14T715:12:46.808+00:00", "status":403,"error":"Forbidden",
"message":"Forbidden","path":"/api/authorities/paths/admin"}

$ curl http://localhost:8080/api/authorities/paths/clerk -u woody:password @
[woody, [ROLE_CLERK]]

$ curl http://localhost:8080/api/authorities/paths/customer -u woody:password @
{"timestamp":"2020-07-14T715:13:04.158+00:00", "status":403,"error":"Forbidden",

"message":"Forbidden","path":"/api/authorities/paths/customer"}

@ woody lacks role ADMIN required to call admin URI and is rejected with 403/Forbidden
@ woody has ROLE_CLERK authority, so clerk URI can be called
® woody lacks role CUSTOMER required to call customer URI and is rejected with 403/Forbidden

10

Chapter 6. Path-based Authority Permission
Constraints

The following example shows how we can assign permission authority constraints. It is also an
example of being granular with the HTTP method in addition to the URI expressed.

Path-based Authority Authorization Constraints

http.authorizeRequests(cfg->cfg.antMatchers(HttpMethod.GET, @

"/api/authorities/paths/price")
.hasAnyAuthority("PRICE_CHECK", "ROLE_ADMIN", "ROLE_CLERK")); @

@ definition is limited to GET method for URI price URI
@ must have permission PRICE_CHECK or roles ADMIN or CLERK

6.1. Path-based Authority Permission (Norm)

The following example shows one of our users with the CUSTOMER role being rejected from calling
the GET price URL

Path-based Authority Permission (Norm)

$ curl http://localhost:8080/api/authorities/paths/customer -u norm:password @
[norm, [ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/paths/price -u norm:password @

{"timestamp":"2020-07-14T715:13:38.598+00:00", "status":403,"error":"Forbidden",
"message":"Forbidden","path":"/api/authorities/paths/price"}

@ norm has role CUSTOMER required to call customer URI

@ norm lacks the ROLE_ADMIN, ROLE_CLERK, and PRICE_CHECK authorities required to invoke the GET
price URI

6.2. Path-based Authority Permission (Frasier)

The following example shows one of our users with the CUSTOMER role and PRICE_CHECK permission.
This user can call both the customer and GET price URIs.

Path-based Authority Permission (Frasier)

$ curl http://localhost:8080/api/authorities/paths/customer -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/paths/price -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

11

@ frazier has the CUSTOMER role assigned required to call customer URI

@ frazier has the PRICE_CHECK permission assigned required to call GET price URI

6.3. Path-based Authority Permission (Sam and
Woody)

The following example shows that users with the ADMIN and CLERK roles are able to call the GET price
URI.

Path-based Authority Permission (Sam and Woody)

$ curl http://localhost:8080/api/authorities/paths/price -u sam:password @
[sam, [ROLE_ADMIN]]

$ curl http://localhost:8080/api/authorities/paths/price -u woody:password @
[woody, [ROLE_CLERK]]

@ sam is assigned the ADMIN role required to call the GET price URI
@ woody is assigned the CLERK role required to call the GET price URI

6.4. Other Path Constraints

We can add a few other path constraints that do not directly relate to roles. For example, we can
exclude or enable a URI for all callers.

Other Path Constraints

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/nobody/**")

.denyAl1()); @
http.authorizeRequests(cfg->cfg.antMatchers(

"/api/authorities/paths/authn/**")
.authenticated()); @

@ all callers of the nobody URI will be denied

@ all authenticated callers of the authn URI will be accepted

6.5. Other Path Constraints Usage

The following example shows a caller attempting to access the URIs that either deny all callers or
accept all authenticated callers

$ curl http://localhost:8080/api/authorities/paths/authn -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/paths/nobody -u frasier:password @

12

{"timestamp":"2020-07-14T718:09:38.669+00:00", "status":403,

"error":"Forbidden", "message":"Forbidden","path":"/api/authorities/paths/nobody"}

$ curl http://localhost:8080/api/authorities/paths/authn @
{"timestamp":"2020-07-14T18:15:24.945+00:00", "status":401,
"error":"Unauthorized", "message": "Unauthorized", "path":"/api/authorities/paths/authn"}

@ frazier was able to access the authn URI because he was authenticated
@ frazier was not able to access the nobody URI because all have been denied for that URI

® anonymous user was not able to access the authn URI because they were not authenticated

13

Chapter 7. Authorization

With that example in place, we can look behind the scenes to see how this occurred.

7.1. Review: FilterSecurityInterceptor At End of Chain

If you remember when we inspected the filter chain setup for our API during the breakpoint in
FilterChainProxy.doFilterInternal() —there was a FilterSecurityInterceptor at the end of the chain.
This is where our path-based authorization constraints get carried out.

FirewalledReguest firewallRequest = this.firewall.getFirewalledRequest((HttpServietRequest) reguest); fFfirewollReqgL
HttpServletResponse firewallResponse = this.firewall.getFirewalledResponse((HttpServietResponse) response); firewc
List<Filter> filters = getFilters(firewallRequest); filters: size = 15 firewollRequest: "FirewolledRequest[or
if (filters == nulUEEEEE || filters.size() == OENEE) { filters: size = 15 .

€

if (logger.isTraceEnabled()) {
logger.trace(LogMessage.of (() -> "No security for " + reguestLine(firewallRequest)));

}
firewallRequest.reset();
chain.doFilter (firewallRequest, firewallResponse);
return;
}
if (logger.isDebugEnabled()) {
logger.debug(LogMessage.of (() -> "Securing " + reguestLine(firewallRequest)));
}

VirtualFilterChain virtualFilterChain = new VirtualFilterChain(firewallRequest, chain, filters);

qqqqq EY— i moas . san o . = o

iables

P
P

rictFirewalledRequest@E403} "FirewalledReguest| org.apache.catalina.connector.RequestFacade@7b19f3af]"
e@6404}

firewallResponse =

filters = {Arra

lledR:
405} size =15

tegrationFilter@7970}

>
»
>
>

ntextPersistenceFilter@7971}
terFilter@7972}

5 = {Usernan ssword AuthenticationFilter@7975}
76}
ingFilter@78977}
B = {BasicAuthenticationFilter@7978}
8 = {RequestCacheAwareFilter@7973}
10 = {SecurityContextHold
cat
12 = {SessionManagementFilter,

6 = {DefaultLoginPageGeneratingFilter@7e
7 = {DefaultLogoutPageGene

Authz Filter

areRequestFilter@7980}
ter@7981}
7982}
13 = {ExceptionTranslationFilter@7983}
14 = {FilterSecuritylnterceptor@7984}

11 = {AncnymousAuther

R R R

Figure 2. Review: FilterSecurityInterceptor At End of Chain

7.2. Attempt Authorization Call

We can set a breakpoint int the AbstractSecurityInterceptor.attemptAuthorization() method to
observe the authorization process.

14

https://github.com/spring-projects/spring-security/blob/5.4.2/web/src/main/java/org/springframework/security/web/FilterChainProxy.java#L199

£ AbstractSecuritylnterceptor.java
Tusage

m v
private void attemptAuthorization(Object object, Collection<ConfigAttribute> attributes, object: "filter invocotion [GET /api/outhorities/pat

Authentication auvthenticated) { outhenticoted: "UsernomePasswordAuthenticationToken [Principal=oerg.springframework.security.core.user
try {
[~ -- this.accessDecisionManager.decide (authenticated, object, attributes);
H

catch (AccessDeniedException ex) {
if (this.logger.isTraceEnabled()) { b1
this.logger.trace(LogMessage.format(format: "Failed to authorize %s with attributes %s using %s", object,
attributes, this.accessDecisionManager));
}
else if (this.logger.isDebugEnabled()) {
this.logger.debug(LogMessage.format(format: "Failed to authorize %s with attributes %s", object, attributes));

}
Debug: & AuthoritiesExampleApp g —
(& Debugger Console = 2 * + 1 ¥ [=
F "http-nio-8080-exec-3"@7,372 in group "main": RUNNING Y ~ | Evalvate expression (=) or add a watch (oxe) -

» D attemptAuthorization:239, AbstractSecurityinterceptor (org.springframewor > this = {FilterSecuritylnterceptor@9966}
beforelnvocation:208, AbstractSecuritylnterceptor (org.springframework.se | > (P object = {Filterinvocation@10246} "filter invocation [GET /apifauthorities/paths/admin]”

invoks 3, FilterSecuritylnterceptor (org.springframework.security.web.acc™ | v (P attributes = {ArrayList@10247} size =1
| doFilter:81, FilterSecurityln (org.springframework.security.web.acc ¥
& doFilter:336, FilterChainProxy$VirtualFilterChain (org.springframework.sec. | ~ (BLa amePasswordAuthenticationToken [Pri...
doFilter:122, ExceptionTranslationFilter (org.springframework.security.web.i 8 principal = {User@10192} "org.springframework.security.core.userfetails.User [Username=sam, Password=[f...
% doFilter:116, ExceptionTranslationFilter (org.springframework.security.web.: f password = null
doFilter:336, FilterChainProxy$VirtualFilterChain (org.springframework.sect » “F username = "sam"
a doFilter:1286, onManagementFilter (org.springframework. security. web. ~ “f authorities = {Collections$UnmodifiableSet@10262} size =1
0 doFilter:81, SessionManagementFilter (org.springframewerk.security.web.se > 0 = {SimpleGrantedAuthority@10264} "ROLE_ADMIN"
2 doFilter:336, FilterChainProxy$VirtualFilterChain (org.springframework.sect *f accountNonExpired = true
» doFilter:109, AnonymousAuthenticationFilter (org.springframework.security. “f accountNonLocked = true
doFilter:336, FilterChainProxy$VirtualFilterChain (org.springframework.secu “F credentialsNonExpired = true
doFilter:149, SecurityContextHolderAwareRequestFilter (org.springframewo “f enabled = true

 credentials = null
Switch frames from anywhere in the IDE with 321 and 364

Figure 3. Authorization Call

7.3. FilterSecurityInterceptor Calls

» the FilterSecurityInterceptor is at the end of the Security FilterChain and calls the
AccessDecisionManager to decide whether the authenticated caller has access to the target object.
The call quietly returns without an exception if accepted and throws an AccessDeniedException if
denied.

* the assigned AccessDecisionManager is pre-populated with a set of AccessDecisionVoters (e.g.,
WebExpressionVoter) based on security definitions and passed the authenticated user, a
reference to the target object, and the relevant rules associated with that target to potentially be
used by the voters.

e the AccessDecisionVoter returns an answer that is either ACCESS_GRANTED, ACCESS_ABSTAIN, or
ACCESS_DENIED.

The overall evaluation depends on the responses from the voters and the aggregate answer setting
(e.g., affirmative, consensus, unanimous) of the manager.

15

©F|Itersecur|tylnterceptor -=-;___J| populated with rules from configuring HttpSecurity B. ‘ at end of Security FilterChain Bi

@ AccessDecisionVoter

@ AccessDecisionManager decisionVoters 1y | ACCESS_GRANTED
ACCESS _ABSTAIM
decide(Authentication, object, attributes) ACCESS_DENMNIED

vote(Authentication, object, attributes)

' |
"Authn" is the current user with authorizations !

"object" is what is being invoked and tested ‘ implerments an individual rule b.
applicable rules are passed as "attributes”

7.4. AccessDecisionManager

The AccessDecisionManager comes in three flavors and we can also create our own. The three flavors
provided by Spring are

» AffirmativeBased - returns positive if any voter returns affirmative

* ConsensusBase - returns positive if majority of voters return affirmative

* UnanimousBased - returns positive if all voters return affirmative or abstain

Denial is signaled with a thrown AccessDeniedException exception. AffirmativeBased is the default.
There is a setting in each for how to handle 100% abstain results — the default is access denied.

@ AccessDecisionManager

decide(authenticated : Authentication, object, attributes)

@AccessDec;’sionVoter
@AbstracmccessDecisionManagerL decisionvoters N [AccESS GRANTED
| ACCESS_ABSTAIN
A ACCESS_DENIED
h *
\
*
hs
“
Y
@AﬁirmativeBased @CcncensusBased ©UnanimcusBased
|
| |'
| |
| |
accepts if accepts if accepts if
any voter majority voters all voters
returns AFFIRMATINWE return AFFIRMATMNE abstain or return AFFIRMATIWVE

16

7.5. Assigning Custom AccessDecisionManager

The following code snippet shows an example of creating a UnanimousBased AccessDecisionManager
and populating it with a custom list of voters.

Creating Custom AccessDecisionManager with Voters

public AccessDecisionManager accessDecisionManager() {
return new UnanimousBased(List.of(
new WebExpressionVoter(),
new RoleVoter(),
new AuthenticatedVoter()));

A custom AccessDecisionManager can be assigned to the builder returned from the access restrictions
call.

Setting Custom AccessDecisionManager

http.authorizeRequests(cfg->cfg.antMatchers(
"/api/authorities/paths/admin/**")
.hasRole("ADMIN").accessDecisionManager(/* custom ADM here*/));

7.6. AccessDecisionVoter

There are several AccessDecisionVoter classes that take care of determining whether the specific
constraints are satisfied, violated, or no determination. We can also create our own by extending or
re-implementing any of the existing implementations and register using the technique shown in the
snippets above.

17

. AccessDecisionVoter]

ACCESS_GRANTED
ACCESS_ABSTAIM
ACCESS_DEMIED

©F§cle‘u’ater @WEbE){pressianUcter @Abstracmclvnterl

|| |

| |
@HcleHierarchWnterI @Jsr?ﬁﬂ‘u’nterl @Authenticatinn?nterl
|| || ||
| |

@ PreInuccatiunhuthnrizatiunhduice\futerI

In our first case, Spring converted our rules to be resolved to the WebExpressionVoter. Because of
that—we will see many similarities to the constraint behavior of URI-based constraints and
expression-based constraints covered towards the end of this lecture.

18

Chapter 8. Role Inheritance

Role inheritance provides an alternative to listing individual roles per URI constraint. Lets take our
case of sam with the ADMIN role. He is forbidden from calling the customer URI.

Admin Forbidden from Calling customer URI

$ curl http://localhost:8080/api/authorities/paths/customer -u sam:password
{"timestamp":"2020-07-14720:15:19.931+00:00", "status":403,"error":"Forbidden",
"message":"Forbidden","path":"/api/authorities/paths/customer"}

8.1. Role Inheritance Definition

We can define a @Bean that provides a RoleHierarchy expressing which roles inherit from other
roles. The syntax to this constructor is a String — based on the legacy XML definition interface.

Example Role Inheritance Definition

public RoleHierarchy roleHierarchy() {
RoleHierarchyImpl roleHierarchy = new RoleHierarchyImpl();
roleHierarchy.setHierarchy(StringUtils.join(List.of(
"ROLE_ADMIN > ROLE_CLERK", @
"ROLE_CLERK > ROLE_CUSTOMER"), @
System.lineSeparator())); ®
return roleHierarchy;

@ role ADMIN will inherit all accessed applied to role CLERK
@ role CLERK will inherit all accessed applied to role CUSTOMER

® String expression built using new lines

With the above @Bean in place and restarting our application, users with role ADMIN or CLERK are able
to invoke the customer URL

Admin Inherits CUSTOMER ROLE

$ curl http://localhost:8080/api/authorities/paths/customer -u sam:password
[sam, [ROLE_ADMIN]]

19

Chapter 9. @Secured

As stated before, URIs are one way to identify a target meant for access control. However, it is not
always the case that we are protecting a controller or that we want to express security constraints
so far from the lower-level component method calls needing protection.

We have at least three options when implementing component method-level access control:

e @Secured
* JSR-250

* expressions

I will cover @Secured and JSR-250 first — since they have a similar, basic constraint capability and
save expressions to the end.

9.1. Enabling @Secured Annotations

@Secured annotations are disabled by default. We can enable them be supplying a
@EnableGlobalMethodSecurity annotation with securedEnabled set to true.

Enabling @Secured

(
securedEnabled = true //@Secured({"ROLE_MEMBER"})

)

public class SecurityConfiguration {

9.2. @Secured Annotation

We can add the @Secured annotation to the class and method level of the targets we want protected.
Values are expressed in authority value. Therefore, since the following example requires the ADMIN
role, we must express it as ROLE_ADMIN authority.

Example @Secured Annotation

("/api/authorities/secured")

public class SecuredAuthoritiesController {
private final WhoAmIController whoAmI;

("ROLE_ADMIN") @
(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(
UserDetails user) {

20

return whoAmI.getCallerInfo(user);

@ caller checked for ROLE_ADMIN authority when calling doAdmin method

9.3. @Secured Annotation Checks

@Secured annotation supports requiring one or more authorities in order to invoke a particular
method.

Example @Secure Annotation Checks

$ curl http://localhost:8080/api/authorities/secured/admin -u sam:password @

[sam, [ROLE_ADMIN]]

$ curl http://localhost:8080/api/authorities/secured/admin -u woody:password @

{"timestamp":"2020-07-14721:11:00.395+00:00", "status":403,
"error":"Forbidden","trace":"org.springframework.security.access.AccessDeniedExceptio

n: ...(lots!!!)

@ sam has the required ROLE_ADMIN authority required to invoke doAdmin

@ woody lacks required ROLE_ADMIN authority needed to invoke doAdmin and is rejected with an
AccessDeniedException and a very large stack trace

9.4. @Secured Many Roles

@Secured will support many roles ORed together.

Example @Secured with Multiple Roles
({"ROLE_ADMIN", "ROLE_CLERK"})

(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> checkPrice(

A user with either ADMIN or CLERK role will be given access to checkPrice().

Example @Secured checkPrice()

$ curl http://localhost:8080/api/authorities/secured/price -u woody:password
[woody, [ROLE_CLERK]]

$ curl http://localhost:8080/api/authorities/secured/price -u sam:password
[sam, [ROLE_ADMIN]]

9.5. @Secured Only Processing Roles

However, @Secured evaluates using a RoleVoter, which only processes roles.

21

Attempt to use @Secured Annotation for Permissions

({"ROLE_ADMIN", "ROLE_CLERK", "PRICE_CHECK"}) @
(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> checkPrice(

@ PRICE_CHECK permission will be ignored
Therefore, we cannot assign a @Secured to allow a permission like we did with the URI constraint.

@Secured Annotation only Supporting Roles

$ curl http://localhost:8080/api/authorities/paths/price -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/secured/price -u frasier:password @
{"timestamp":"2020-07-14721:24:20.665+00:00", "status":403,

"error":"Forbidden","trace":"org.springframework.security.access.AccessDeniedExceptio
n ...(lots!!!)

@ frasier can call URI GET paths/price because he has permission PRICE_CHECK and URI-based
constraints honor non-role authorities (i.e., permissions)

@ frasier cannot call URI GET secured/price because checkPrice() is constrained by @Secured and
that only supports roles

9.6. @Secured Does Not Support Role Inheritance

@Secured annotation does not appear to support role inheritance we put in place when securing
URIs.

$ curl http://localhost:8080/api/authorities/paths/clerk -u sam:password @
[sam, [ROLE_ADMINT]

$ curl http://localhost:8080/api/authorities/secured/clerk -u sam:password @
{"timestamp":"2020-07-14T721:48:40.063+00:00", "status":403,

“error":"Forbidden","trace":"org.springframework.security.access.AccessDeniedExceptio
n ...(lots!!!)

@ sam is able to call paths/clerk URI because of ADMIN role inherits access from CLERK role

@ samis unable to call doClerk() method because @Secured does not honor role inheritance

22

Chapter 10. Controller Advice

When using URI-based constraints, 403/Forbidden checks were done before calling the controller
and is handled by a default exception advice that limits the amount of data emitted in the response.
When using annotation-based constraints, an AccessDeniedException is thrown during the call to the
controller and is currently missing a exception advice. That causes a very large stack trace to be
returned to the caller (abbreviated here with "...(lots!!)").

Default AccessDeniedException result

$ curl http://localhost:8080/api/authorities/secured/clerk -u sam:password @
{"timestamp":"2020-07-14T721:48:40.063+00:00", "status":403,

"error":"Forbidden","trace":"org.springframework.security.access.AccessDeniedException
...(lots!!!)

10.1. AccessDeniedException Exception Handler

We can correct that information bleed by adding an @ExceptionHandler to address
AccessDeniedException. In the example below I am building a string with the caller’s identity and
filling in the standard fields for the returned MessageDTO used in the error reporting in my
BaseExceptionAdvice.

AccessDeniedException Exception Handler

import org.springframework.security.access.AccessDeniedException;
import org.springframework.security.core.context.SecurityContextHolder;
import org.springframework.web.bind.annotation.ExceptionHandler;

import org.springframework.web.bind.annotation.RestControllerAdvice;

public class ExceptionAdvice extends info.ejava.examples.common.web
.BaseExceptionAdvice { @
({AccessDeniedException.class}) @
public ResponseEntity<MessageDT0> handle(AccessDeniedException ex) {
String text=String.format("caller[%s] is forbidden from making this request"”,
getPrincipal());
return this.buildResponse(HttpStatus.FORBIDDEN, null, text, (Instant)null);
}

protected String getPrincipal() {
try { @
return SecurityContextHolder.getContext().getAuthentication().getName();
} catch (NullPointerException ex) {
return "null";

}

23

@ extending base class with helper methods and core set of exception handlers
@ adding an exception handler to intelligently handle access denial exceptions

® SecurityContextHolder provides Authentication object for current caller

10.2. AccessDeniedException Exception Result

With the above @ExceptionAdvice in place, the stack trace from the AccessDeniedException has been
reduced to the following useful information returned to the caller. The caller is told, what they

called and who the caller identity was when they called.
AccessDeniedException Filtered thru @ExceptionAdvice

$ curl http://localhost:8080/api/authorities/secured/clerk -u sam:password
{"ur1":"http://1localhost:8080/api/authorities/secured/clerk", "message”:"Forbidden",
"description":"caller[sam] is forbidden from making this request",

"timestamp":"2020-07-14721:56:32.7439967"}

24

Chapter 11. JSR-250

JSR-250 is an industry Java standard — also adopted by JakartaEE — for expressing common aspects
(including authorization constraints) using annotations. It has the ability to express the same things
as @Secured and a bit more. @Secured lacks the ability to express "permit all" and "deny all". We can
do that with JSR-250 annotations.

11.1. Enabling JSR-250

JSR-250 authorization annotations are also disabled by default. We can enable them the same as
@Secured by setting the @EnableGlobalMethodSecurity.jsr250Enabled value to true.

Enabling JSR-250

(
jsr250Enabled = true //@RolesAllowed({"ROLE_MANAGER"})

)

public class SecurityConfiguration {

11.2. @RolesAllowed Annotation

JSR-250 has a few annotations, but its core @RolesAllowed is a 1:1 match for what we can do with
@Secured. The following example shows the doAdmin() method restricted to callers with the admin
role, expressed as its ROLE_ADMIN authority expression.

Example @RolesAllowed Annotation

("/api/authorities/jsr250")

public class Jsr250AuthoritiesController {
private final WhoAmIController whoAmI;

("ROLE_ADMIN") @

(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})

public ResponseEntity<String> doAdmin(
UserDetails user) {

return whoAmI.getCallerInfo(user);

@ role is expressed with ROLE_ prefix

11.3. @RolesAllowed Annotation Checks

The @RollsAllowed annotation is restricting callers of doAdmin() to have authority ROLE_ADMIN.

25

https://en.wikipedia.org/wiki/JSR_250

@RolesAllowed Annotation Checks

$ curl http://localhost:8080/api/authorities/jsr250/admin -u sam:password @
[sam, [ROLE_ADMIN]]

$ curl http://localhost:8080/api/authorities/jsr250/admin -u woody:password @
{"ur1":"http://localhost:8080/api/authorities/jsr250/admin", "message":"Forbidden",

"description”:"caller[woody] is forbidden from making this request",
"timestamp":"2020-07-14722:10:31.17747172"}

@ sam can invoke doAdmin() because he has the ROLE_ADMIN authority

@ woody cannot invoke doAdmin() because he does not have the ROLE_ADMIN authority

11.4. Multiple Roles

The @RollsAllowed annotation can express multiple authorities the caller may have.

({"ROLE_ADMIN", "ROLE_CLERK", "PRICE_CHECK"})
(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> checkPrice(

11.5. Multiple Role Check

The following shows were both sam and woody are able to invoke checkPrice() because they have
one of the required authorities.

JSR-250 Supports ORing of Required Roles

$ curl http://localhost:8080/api/authorities/jsr250/price -u sam:password D
[sam, [ROLE_ADMINT]

$ curl http://localhost:8080/api/authorities/jsr250/price -u woody:password @
[woody, [ROLE_CLERK]]

@ sam can invoke checkPrice() because he has the ROLE_ADMIN authority

@ woody can invoke checkPrice() because he has the ROLE_ADMIN authority

11.6. JSR-250 Does not Support Non-Role Authorities

Out-of-the-box, JSR-250 authorization annotation processing does not support non-Role
authorizations. The following example shows where frazer is able to call URI GET paths/price but
unable to call checkPrice() of the JSR-250 controller even though it was annotated with one of his
authorities.

26

JSR-250 Does not Support Non-Role Authorities

$ curl http://localhost:8080/api/authorities/paths/price -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/jsr250/price -u frasier:password @
{"ur1":"http://localhost:8080/api/authorities/jsr250/price", "message":"Forbidden",

"description":"caller[frasier] is forbidden from making this request",
"timestamp":"2020-07-14722:13:26.2473287"}

® frasier can invoke URI GET paths/price because he has the PRICE_CHECK authority and URI-based
constraints support non-role authorities

@ frazier cannot invoke JSR-250 constrained checkPrice() even though he has PRICE_CHECK
permission because JSR-250 does not support non-role authorities

27

Chapter 12. Expressions

As demonstrated, @Secured and JSR-250-based constraints are functional but very basic. If we need
more robust handling of constraints we can use Spring Expression Language and Pre/Post
Constraints. Expression support is enabled by adding the following setting to the
@EnableGlobalMethodSecurity annotation.

Enable Expressions

(
prePostEnabled = true //@PreAuthorize("hasAuthority('ROLE_ADMIN')"),

@PreAuthorize("hasRole("ADMIN')")
)

12.1. Expression Role Constraint

Expressions support many callable features and I am only going to scratch the surface here. The
primary annotation is @PreAuthorize and whatever the constraint is—it is checked prior to calling
the method. There are also features to filter inputs and outputs based on flexible configurations. I
will be sticking to the authorization basics and not be demonstrating the other features here. Notice
that the contents of the string looks like a function call—and it is. The following example
constrains the doAdmin() method to users with the role ADMIN.

Example Expression Role Constraint

("/api/authorities/expressions")

public class ExpressionsAuthoritiesController {
private final WhoAmIController whoAmI;

("hasRole('ADMIN")") @
(path = "admin", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doAdmin(
UserDetails user) {
return whoAmI.getCallerInfo(user);

@ hasRole automatically adds the ROLE prefix

12.2. Expression Role Constraint Checks

Much like @Secured and JSR-250, the following shows the caller being checked by expression
whether they have the ADMIN role. The ROLE _ prefix is automatically applied.

Example Expression Role Constraint

$ curl http://localhost:8080/api/authorities/expressions/admin -u sam:password @

28

https://docs.spring.io/spring-security/site/docs/current/reference/html5/#el-access

[sam, [ROLE_ADMINT]

$ curl http://localhost:8080/api/authorities/expressions/admin -u woody:password @
{"ur1":"http://1localhost:8080/api/authorities/expressions/admin", "message”:"Forbidden’

I

"description”:"caller[woody] is forbidden from making this request",
"timestamp":"2020-07-14722:31:07.669546Z"}

@ sam can invoke doAdmin() because he has the ADMIN role

@ woody cannot invoke doAdmin() because he does not have the ADMIN role

12.3. Expressions Support Permissions and Role
Inheritance

As noted earlier with URI-based constraints, expressions support non-role authorities and role
inheritance. The following example checks whether the caller has an authority and chooses to
manually supply the ROLE_ prefix.

Expressions Support non-Role Authorities

("hasAuthority('ROLE_CLERK')")
(path = "clerk", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> doClerk(

The following execution demonstrates that a caller with ADMIN role will be able to call a method that
requires the CLERK role because we earlier configured ADMIN role to inherit all CLERK role accesses.

Example Expression Role Inheritance Checks

$ curl http://localhost:8080/api/authorities/expressions/clerk -u sam:password
[sam, [ROLE_ADMIN]]

12.4. Supports Permissions and Boolean Logic

Expressions can get very detailed. The following shows two evaluations being called and their
result ORed together. The first evaluation checks whether the caller has certain roles. The second
checks whether the caller has a certain permission.

Example Evaluation Logic
("hasAnyRole("ADMIN', 'CLERK"') or hasAuthority('PRICE_CHECK')")

(path = "price", produces = {MediaType.TEXT_PLAIN_VALUE})
public ResponseEntity<String> checkPrice(

Example Evaluation Logic Checks for Role

$ curl http://localhost:8080/api/authorities/expressions/price -u sam:password @M

29

[sam, [ROLE_ADMINT]

$ curl http://localhost:8080/api/authorities/expressions/price -u woody:password @
[woody, [ROLE_CLERK]]

@ sam can call checkPrice() because he satisfied the hasAnyRole() check by having the ADMIN role
@ woody can call checkPrice() because he satisfied the hasAnyRole() check by having the CLERK role

Example Evaluation Logic Checks for Permission

$ curl http://localhost:8080/api/authorities/expressions/price -u frasier:password @
[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

@ frazier can call checkPrice() because he satisfied the hasAuthority() check by having the
PRICE_CHECK permission

Example Evaluation Logic Checks

$ curl http://localhost:8080/api/authorities/expressions/customer -u norm:password M
[norm, [ROLE_CUSTOMER]]

$ curl http://localhost:8080/api/authorities/expressions/price -u norm:password @
{"ur1":"http://1localhost:8080/api/authorities/expressions/price", "message":"Forbidden"

14
nm,.n

"description":"caller[norm] is forbidden from making this request",
"timestamp":"2020-07-14722:48:04.7715887"}

@ norm can call doCustomer () because he satisfied the hasRole() check by having the CUSTOMER role

@ norm cannot call checkPrice() because failed both the hasAnyRole() and hasAuthority() checks by
not having any of the looked for authorities.

30

Chapter 13. Summary

In this module we learned:

* the purpose of authorities, roles, and permissions
* how to express authorization constraints using URI-based and annotation-based constraints
* how to enforcement of the constraints is accomplished

e how the access control framework centers around an AccessDecisionManager and
AccessDecisionVoter classes

* how to implement role inheritance for URI and expression-based constraints

* to implement an AccessDeniedException controller advice to hide necessary stack trace
information and provide useful error information to the caller

* expression-based constraints are limitless in what they can express

31

	Authorization
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Authorities, Roles, Permissions
	Chapter 3. Authorization Constraint Types
	3.1. Path-based Constraints
	3.2. Annotation-based Constraints

	Chapter 4. Setup
	4.1. Who Am I Controller
	4.2. Demonstration Users
	4.3. Core Security FilterChain Setup
	4.4. Controller Operations

	Chapter 5. Path-based Authorizations
	5.1. Path-based Role Authorization Constraints
	5.2. Example Path-based Role Authorization (Sam)
	5.3. Example Path-based Role Authorization (Woody)

	Chapter 6. Path-based Authority Permission Constraints
	6.1. Path-based Authority Permission (Norm)
	6.2. Path-based Authority Permission (Frasier)
	6.3. Path-based Authority Permission (Sam and Woody)
	6.4. Other Path Constraints
	6.5. Other Path Constraints Usage

	Chapter 7. Authorization
	7.1. Review: FilterSecurityInterceptor At End of Chain
	7.2. Attempt Authorization Call
	7.3. FilterSecurityInterceptor Calls
	7.4. AccessDecisionManager
	7.5. Assigning Custom AccessDecisionManager
	7.6. AccessDecisionVoter

	Chapter 8. Role Inheritance
	8.1. Role Inheritance Definition

	Chapter 9. @Secured
	9.1. Enabling @Secured Annotations
	9.2. @Secured Annotation
	9.3. @Secured Annotation Checks
	9.4. @Secured Many Roles
	9.5. @Secured Only Processing Roles
	9.6. @Secured Does Not Support Role Inheritance

	Chapter 10. Controller Advice
	10.1. AccessDeniedException Exception Handler
	10.2. AccessDeniedException Exception Result

	Chapter 11. JSR-250
	11.1. Enabling JSR-250
	11.2. @RolesAllowed Annotation
	11.3. @RolesAllowed Annotation Checks
	11.4. Multiple Roles
	11.5. Multiple Role Check
	11.6. JSR-250 Does not Support Non-Role Authorities

	Chapter 12. Expressions
	12.1. Expression Role Constraint
	12.2. Expression Role Constraint Checks
	12.3. Expressions Support Permissions and Role Inheritance
	12.4. Supports Permissions and Boolean Logic

	Chapter 13. Summary

