Testcontainers

jim stafford

Fall 2024 v2020-08-10: Built: 2024-11-19 21:43 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Testcontainers Overview
3. Example
3.1. Maven Dependencies
3.2. Main Tree
3.3. Test Tree
4. Example: Main Tree Artifacts
4.1. Docker Compose File
4.2. Docker Compose File Reference
4.3. DockerComposeContainer
4.4. Obtaining Runtime Port Numbers
5. Example: Test Tree Artifacts
5.1. Primary NTest Setup
5.2. Injecting Dynamically Assigned Port#s
5.3. DynamicPropertySource
5.4. Injections Complete prior to Tests
6. Exec Commands
6.1. Exec MongoDB Command Output
6.2. Exec Postgres Command Output
7. Connect to Resources
7.1. Maven Dependencies
7.2. Injected Clients
7.3. URL Templates
7.4. Providing Dynamic Resource URL Declarations
7.5. Application Properties
7.6. JMS Listener
7.7. Obtain Client Status
7.8. Client Status Output

8. Summary

© 00 00 1 O U1 U1 U1 b W W W N R

g S O N e
(= TS B B R - PR &5 N &5 NS N N U I = =)

Chapter 1. Introduction

In a previous section we implemented "unit integration tests" with in-memory instances for back-
end resources. We later leveraged Docker and Docker Compose to implement "integration tests"
with real resources operating in a virtual environment. We self-integrated Docker Compose in that
later step, using several Maven plugins and Maven’s integration testing phases.

In this lecture I will demonstrate an easier, more seamless way to integrate Docker Compose into
our testing using Testcontainers. This will allow us to drop back into the Maven test phase and
implement the integration tests using straight forward unit test constructs.

1.1. Goals

You will learn:

* how to better integrate Docker and DockerCompose into unit tests

* how to inject dynamically assigned values into the application context startup

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1. implement an integration unit test using Docker Compose and Testcontainers library

2. implement a Spring DynamicPropertySource to obtain dynamically assigned port numbers in time
for concrete URL injections

3. execute shell commands from a JUnit test into a running Docker container using Testcontainers
library

4. establish client connection to back-end resources to inspect state as part of the test

https://www.testcontainers.org/

Chapter 2. Testcontainers Overview

Testcontainers is a Java library that supports running Docker containers within JUnit tests and
other test frameworks.

Testcontainers provides a layer of integration that is well aware of the integration challenges that
are present when testing with Docker images and can work both outside and inside a Docker
container itself.

Spring making changes to support Testcontainers

As a self observation —by looking at documentation, articles, and timing of

o feature releases —it is my opinion that Spring and Spring Boot are very high on
Testcontainers and have added features to their framework to help make testing
with Testcontainers as seamless as possible.

https://www.testcontainers.org/

Chapter 3. Example

This example builds on the previous Docker Compose lecture that uses the same Votes and Elections
services. The main difference is that we will be directly interfacing with the Docker images using
Testcontainers in the test phase versus starting up the resources at the beginning of the tests and
shutting down at the end.

By having such direct connect with the containers —we can control what gets reused from test to
test. Sharing reused container state between tests can be error prone. Starting up and shutting
down containers takes a noticeable amount of time to complete. Alternatively, we want to have
more control over when we do which approach without going through extreme heroics.

3.1. Maven Dependencies

The following lists the Testcontainers Maven dependencies. The core library calls are within the
testcontainers artifact and JUnit-specific capabilities are within the junit-jupiter artifact. I have
declared junit-jupiter dependency at the test scope and testcontainers at compile (default) scope
because

* this is a pure test module — with no packaged implementation code
* helper methods have been placed in src/main

* as the test suite grows larger, this allows the helper code and other test support features to be
shared among different testing modules

Testcontainers Maven Dependencies

<dependency>
<groupId>org.testcontainers</groupIld>
<artifactId>testcontainers</artifactId> @

</dependency>

<dependency>
<groupld>org.testcontainers</groupIld>
<artifactId>junit-jupiter</artifactId> @
<scope>test</scope>

</dependency>

@ core Testcontainers calls will be placed in src/main to begin to form a test helper library

@ JUnit-specific calls will be placed in src/test

3.2. Main Tree

The module’s main tree contains a source copy of the Docker Compose file describing the network
of services, a helper class that encapsulates initialization and configuration status of the network,
and a JMS listener that can be used to subscribe to the JMS messages between the Voters and
Elections services.

Module Main Tree

src/main/

|-- java

| ‘-- info

| ‘-- ejava

| ‘-~ examples

| ‘-- sve

| ‘-~ docker

| ‘-- votes

| |-- ClientTestConfiguration.java
| ‘-- VoterListener.java
‘-- resources

‘-~ docker-compose-votes.yml

3.3. Test Tree

The test tree contains artifacts that are going to pertain to this test only. The JUnit test will rely
heavily on the artifacts in the src/main tree and we should try to work like that might come in from
a library shared by multiple integration unit tests.

Module Test Tree

src/test/

|-- java

| ‘-- info

| ‘-- ejava

| ‘-~ examples

| ‘-- sve

| ‘-~ docker

| ‘-- votes

| ‘-- ElectionCNTest.java
‘-- resources

|-- application.properties
‘-~ junit-platform.properties

Chapter 4. Example: Main Tree Artifacts

The main tree contains artifacts that are generic to serving up the network for specific tests hosted
in the src/test tree. This division has nothing directly related to do with Testcontainers — except to
show that once we get one of these going, we are going to want more.

4.1. Docker Compose File

Our Docker Compose file is tucked away within the test module since it is primarily meant to
support testing. I have purposely removed all external port mapping references because they are
not needed. Testcontainers will provide another way to map and locate the host port#. I have
eliminated the build of the image. It should have been built by now based on Maven module
dependencies. However, if we can create a resolvable source reference to the
module — Testcontainers will make sure it is built.

Docker Compose File For Test

version: '3.8'
services:
mongo:
image: mongo:4.4.0-bionic
environment:
MONGO_INITDB_ROOT_USERNAME: admin
MONGO_INITDB_ROOT_PASSWORD: secret
postgres:
image: postgres:12.3-alpine
environment:
POSTGRES_PASSWORD: secret
activemq:
image: rmohr/activemqg:5.15.9
api:
image: dockercompose-votes-api:latest
depends_on:
- mongo
- postgres
- activemq
environment:
- spring.profiles.active=integration
- MONGODB_URI=mongodb://admin:secret@mongo:27017/votes_db?authSource=admin
- DATABASE_URL=postgres://postgres:secret@postgres:5432/postgres

4.2. Docker Compose File Reference

Testcontainers will load one to many layered Docker Compose files— but insists that they each be
expressed as a java.io.File. If we assume the code in the src/main tree is always going to be in
source form —then we can make a direct reference there. However, assuming that this could be
coming from a JAR—1I decided to copy the data from classpath and into a referencable file in the
target tree.

Obtaining Portable File Reference from Classpath

import java.io.File;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardCopyOption;

public static File composeFile() {
Path targetPath = Paths.get("target/docker-compose-votes.yml"); @
try (InputStream is = ClientTestConfiguration.class @
.getResourceAsStream("/docker-compose-votes.yml")) {
Files.copy(is, targetPath, StandardCopyOption.REPLACE_EXISTING);
} catch (IOException ex) {
Assertions.fail("error creating source Docker Compose file", ex);

}
return targetPath.toFile();

@ assuming worse case that the file will be coming in from a test support JAR

@ placing referencable file in target path — actual name does not matter
The following shows the source and target locations of the Docker Compose file written out.

Writing Out Docker Compose File

target/

| ‘-- classes/

| ‘-- docker-compose-votes.yml @
‘-~ docker-compose-votes.yml @

@ source coming from classpath

@ target written as a known file in target directory

4.3. DockerComposeContainer

Testcontainers provides many containers —including a generic Docker container, image-specific
containers, and a Docker Compose container. We are going to leverage our knowledge of Docker
Compose and the encapsulation of details of the Docker Compose file here and have Testcontainers
directly parse the Docker Compose file.

The example shows us supplying a project name, file reference(s), and then exposing individual
container ports from each of the services. Originally —only the API port needed to be exposed.
However, because of the simplicity to do more with Testcontainers, I am going to expose the other
ports as well. Testcontainers will also conveniently wait for activity on each of the ports when the
network is started — before returning control back to our test. This can eliminate the need for "is
server ready?" checks.

https://www.testcontainers.org/modules/databases/

public static DockerComposeContainer testEnvironment() {
DockerComposeContainer env =
new DockerComposeContainer("testcontainers-votes", composeFile())

.withExposedService("api", 8080) @®
.withExposedService("activemq", 61616) @
.withExposedService("postgres", 5432) @
.withExposedService("mongo", 27017) @
.withLocalCompose(true); ®

return env,

@ exposing container ports using random port and will wait for container port to become active
@ optionally exposing lower level resource services to demonstrate further capability

® indicates whether this is a host machine that will run the images as children or whether this is
running as a Docker image and the images will be tunneled (wormholed) out as sibling
containers

4.4. Obtaining Runtime Port Numbers

At runtime, we can obtain the assigned hostname and port numbers by calling getServiceHost()
and getServicePort() with the service name and container port we exposed earlier.

Obtaining Runtime Port Numbers
DockerComposeContainer env = ClientTestConfiguration.testEnvironment(); @
env.start(); @

env.getServicePort("api", 8080)); ®
env.getServiceHost("mongo", null); @
env.getServicePort("mongo", 27017);
env.getServiceHost("activemq", null);
env.getServicePort("activemq", 61616);
env.getServiceHost("postgres”, null);
env.getServicePort("postgres", 5432);

@ Docker Compose file is parsed
@ network/services must be started in order to determine mapped host port numbers
® referenced port must have been listed with withExposedService() earlier

@ hostname is available as well if ever not available on localhost. Second param not used.

https://www.testcontainers.org/supported_docker_environment/continuous_integration/dind_patterns/

Chapter 5. Example: Test Tree Artifacts

5.1. Primary NTest Setup

We construct our test as a normal Spring Boot integration unit test (NTest) except we have no core
application to include in the Spring context—everything is provided through the test
configuration. There is no need for a web server —we will use HTTP calls from the test’s JVM to
speak to the remote web server.

Docker images and Docker Compose networks of services take many seconds (~10-15secs) to
completely startup. Thus we want to promote some level of efficiency between tests. We will
instantiate and store the DockerComposeContainer in a static variable, initialize and shutdown once
per test class, and reuse for each test method within that class. Since we are sharing the same
network for each test method —I am also demonstrating the ability to control the order of the test
methods.

Lastly—we can have the lifecycle of the network integrated with the JUnit test case by adding the
@Testcontainers annotation to the class and the @Container annotation to the field holding the
overall container. This takes care of automatically starting and stopping the network defined in the
env variable.

Primary NTest Setup

import org.testcontainers.containers.DockerComposeContainer;
import org.testcontainers.junit.jupiter.Container;
import org.testcontainers.junit.jupiter.Testcontainers;

®
(MethodOrderer.OrderAnnotation.class) @
(classes={ClientTestConfiguration.class}, @D
webEnvironment = SpringBootTest.WebEnvironment.NONE) @
public class ElectionCNTest {
®
private static DockerComposeContainer env = ®
ClientTestConfiguration.testEnvironment();

(M
public void vote_counted_in_election() { //...
(3) @
public void test3() { vote_counted_in_election(); }
(2)

public void test2() { vote_counted_in_election(); }

@ Only test constructs in our application context —no application beans
@ we do not need a web server — we are the client of a web server

® sharing same network in all tests within this test case

@ controlling order of tests when using shared network

® @Testcontainers and @Container annotations integrate the lifecycle of the network with the test
case

5.2. Injecting Dynamically Assigned Port#s

We soon hit a chicken-and-the-egg problem when we attempt to inject the URLs int the test class.

» The test class attempts to @Autowire URLs for

: the services
private URI votesUrl;

private URI electionsUrl;

» the @Bean factories build the URLs from the

host and port number _
public URI baseUrl() {

return UriComponentsBuilder
.newInstance()
.host(host)
.port(port)//...

public URI votesUr1(URI baseUrl) { //...

public URI electionsUr1(URI baseUrl)
{//...

* the host and port number are injected into

the configuration class using values from the) _ 9 _)
Spring context public class ClientTestConfiguration {

("${it.server.host:localhost}")
private String host;

("${it.server.port:9090}")
private int port;

* the port number information is not available
until after the network is started and the
network is not started until just before the
first test

private static DockerComposeContainer
env =
ClientTestConfiguration.testEnvironment

OF
I ==
private URI votesUrl;

private URI electionsUrl;

5.3. DynamicPropertySource

In what seemed like a special favor to Testcontainers— Spring added a DynamicPropertySource
construct to the framework that allows for a property to be supplied late in the startup process.

* after starting the network but prior to injecting any URIs and running a test, Spring invokes the
following annotated method in the JUnit test so that it may inject any late properties.

private static void properties(DynamicPropertyRegistry registry) { @
ClientTestConfiguration.initProperties(registry, env);

}

® method is required to be static

* the callback method can then supply the missing property that will allow for the URI injections
needed for the tests

public static void initProperties(DynamicPropertyRegistry registry,
DockerComposeContainer env){
registry.add("it.server.port", ()->env.getServicePort("api", 8080));
//...

Nice!

5.4. Injections Complete prior to Tests

With the injections in place, we can show that URLs with the dynamically assigned port numbers.
We also have the opportunity to have the test wait for anything we can think of. Testcontainers
waited for the container port to become active. The example below instructs Testcontainers to wait
for our API calls to be available as well. This eliminates the need for that ugly @BeforeEach call in the
last lecture where we needed to wait for the API server to be ready before running the tests.

Example @BeforeEach

public void init() throws IOException, InterruptedException {
log.info("votesUr1={}", votesUrl); @
log.info("electionsUr1={}", votesUrl);

/**

* wait for various events relative to our containers

*/

env.waitingFor("api", Wait.forHttp(votesUrl.toString())); @
env.waitingFor("api", Wait.forHttp(electionsUrl.toString()));

10

@ logging injected URLs with dynamically assigned host port numbers

@ instructing Testcontainers to also wait for the API to come available

Example URLs with Dynamically Assigned Port Numbers

ElectionCNTest#init:73 votesUrl=http://localhost:32989/api/votes
ElectionCNTest#init:74 electionsUrl=http://localhost:32989/api/votes

11

Chapter 6. Exec Commands

Testcontainers gives us the ability to execute commands against specific running containers. The
following executes the database CLI interfaces, requests a dump of information, and then obtains
the results from stdout.

Example Commands Issued to Running Containers

import org.testcontainers.containers.Container.ExecResult;
import org.testcontainers.containers.ContainerState;

ContainerState mongo = (ContainerState) env.getContainerByServiceName("mongo_1")
.orElseThrow();

ExecResult result = mongo.execInContainer("mongo"”,
"-u", "admin", "-p", "secret", "--authenticationDatabase", "admin",
"--eval", "db.getSiblingDB('votes_db').votes.find()");

log.info("voter votes = {}", result.getStdout());

ContainerState postgres = (ContainerState)env.getContainerByServiceName("postgres_1")
.orElseThrow();

result = postgres.execInContainer("psql”,
"-U", "postgres",

-¢", "select * from vote");
log.info("election votes = {}", result.getStdout());

That is a bit unwieldy, but demonstrates what we can do from a shell perspective and we will
improve on this in a moment by using the APIL

6.1. Exec MongoDB Command Output

The following shows the stdout obtained from the MongoDB container after executing the login and
query of the votes collection.

Exec MongoDB Command Output

ElectionCNTest#init:105 voter votes = MongoDB shell version v4.4.0

connecting to:
mongodb://127.0.0.1:27017/7authSource=admin&compressors=disabled&gssapiServiceName=mon
godb

Implicit session: session { "id" : UUID("5f903fe7-b43c-4ce8-bbae-7ef53fchbf434") }
MongoDB server version: 4.4.0

{ "_id" : ObjectId("5f357fef01737362e202396d"), "date" : ISODate("2020-08-
13718:01:19.8722"), "source" : "b67e012e-3e2f-4a66-b24b-b64d06d9b4c2", "choice" :
"quisp-de5fd4f2-8ab8-4997-852e-2bfb97862¢87", "_class" :
"info.ejava.examples.svc.docker.votes.dto.VoteDTO" }

{ "_id" : ObjectId("5f357ff001737362e202396e"), "date" : ISODate("2020-08-
13718:01:20.5152"), "source" : "af366d9b-53cb-4487-8f21-e634eca®8d67", "choice" :
"quake-784f3df6-cbc4-4c3b-8d45-58636b335096", "_class" :
"info.ejava.examples.svc.docker.votes.dto.VoteDTO" }

12

6.2. Exec Postgres Command Output

The following shows the stdout from the Postgres container after executing the login and query of
the VOTE table.

Exec Postgres Command Output

ElectionCNTest#init:99 election votes =
id | choice date
| source

5f357fef01737362e202a96d | quisp-de5fd4f2-8ab8-4997-852e-2bfb97862c87 | 2020-08-13
18:01:19.872 | b67e012e-3e2f-4366-b24b-b64d06d9Ibac2

5f357ff001737362e202a96e | quake-784f3df6-cbc4-4c3b-8d45-58636b335096 | 2020-08-13
18:01:20.515 | af366d9b-53cb-4487-8f21-e634ecad8d67

(éléows)

13

Chapter 7. Connect to Resources

Executing a command against a running service may be useful for interactive work. In fact, we
could create a breakpoint in the test and then manually go out to inspect the back-end resources
(using docker ps to locate the container and docker exec to run a shell within the container) if we
have access to the host network.

However, it can be clumsy to make any sense of the stdout result when writing an automated test. If
we actually need to get state from the resource —it will be much simpler to use a first-class
resource API to obtain results.

Lets do that now.

7.1. Maven Dependencies

To add resource clients for our three back-end resources we just need to add the following familiar
dependencies. We first introduced them in the API module’s dependencies in an earlier lecture.

Back-end Resource Connection Dependencies

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-activemg</artifactId>
</dependency>

7.2. Injected Clients

Resource Clients to be Injected

The following resource clients will be injected
into the test class. These are made available by =~ Private MongoClient mongoClient;
the individual AutoConfiguration class for the

resource types. private JmsTemplate jmsTemplate;

private JdbcTemplate jdbcTemplate;

14

Required URL properties

The AutoConfiguration classes will require the = Spring.data.mongodb.uri

following properties defined spring.activemq.broker-url
spring.datasource.url

7.3. URL Templates

The URLs can be built using the following hard-coded helper methods as long as we know the host
and port number of each service.

URL Template Helper Methods

public static String mongoUr1(String host, int port) {
return String.format("mongodb://admin:secret@%s:%d/votes_db?authSource=admin",
host, port);
}
public static String jmsUrl(String host, int port) {
return String.format("tcp://%s:%s", host, port);
¥
public static String jdbecUr1(String host, int port) {
return String.format("jdbc:postgresql://%s:%d/postgres"”, host, port);

}

7.4. Providing Dynamic Resource URL Declarations

The host and port numbers can be supplied from the network —just like we did with the APIL
Therefore, we can expand the dynamic property definition to include the three other properties.

Dynamic Property Definitions

public static void initProperties(DynamicPropertyRegistry registry,
DockerComposeContainer env) {
registry.add("it.server.port", ()->env.getServicePort("api", 8080));
registry.add("spring.data.mongodb.uri", ()-> mongoUr1(@
env.getServiceHost("mongo", null),
env.getServicePort("mongo", 27017))); @
registry.add("spring.activemg.broker-url", ()->jmsUrl(
env.getServiceHost("activemg", null),
env.getServicePort("activemq", 61616)));
registry.add("spring.datasource.url", ()->jdbcUr1(
env.getServiceHost("postgres”, null),
env.getServicePort("postgres", 5432)));

® dynamically assigned host port numbers are made available from running network

@ properties are provided to Spring late in the startup process —but in time to inject before the

15

tests

7.5. Application Properties

The dynamically created URLs properties will be joined up with the following hard-coded
application properties to complete and connection information.

Hard-coded Application Properties

#activemq
spring.jms.pub-sub-domain=true

#postgres
spring.datasource.driver-class-name=org.postgresql.Driver
spring.datasource.username=postgres
spring.datasource.password=secret

7.6. JMS Listener

To obtain the published JMS messages —we add the following component with a JMS Listener
method. This will print a debug of the message and increment a counter.

//...

import org.springframework.jms.annotation.JmsListener;
import jakarta.jms.JMSException;

import jakarta.jms.Message;

import jakarta.jms.TextMessage;

public class VoterListener {
private AtomicInteger msgCount=new AtomicInteger(0);

(destination = "votes")
public void receive(Message msg) throws JIMSException {

log.info("jmsMsg={}, {}", msgCount.incrementAndGet(), ((TextMessage) msq)
.getText());

}
}

We must add the JMS listener class to the Spring application context of the test. The following
example shows that being explicitly done in the @SpringBootTest.classes annotation.

Add Component to Test Application Context

(classes={ClientTestConfiguration.class, VoterListener.class}, @®
webEnvironment = SpringBootTest.WebEnvironment.NONE)

16

//...
public class ElectionCNTest {

@ adding VoterListener component class to Spring context

7.7. Obtain Client Status

The following shows a set calls to the client interfaces to show the basic capability to communicate
with the network services. This gives us the ability to add debug or obscure test verification.

Example Network Service Client Calls

public void init() throws IOException, InterruptedException {

/**
* connect directly to explosed port# of images to obtain sample status
*/
log.info("mongo client vote count={}", @®
mongoClient.getDatabase("votes_db").getCollection("votes").countDocuments());

log.info("activemq msg={}", listener.getMsgCount().get()); @

log.info("postgres client vote count={}", ®
jdbcTemplate.queryForObject("select count (*) from vote", Long.class));

@ getting the count of vote documents from MongoDB client
@ getting number of messages received from JMS listener

® getting the number of vote rows from Postgres client

7.8. Client Status Output

The following shows an example of the client output in the @BeforeEach method, captured after the

first test and before the second test.
Example Client Status Output
ElectionCNTest#init:85 mongo client vote count=6

ElectionCNTest#init:87 activemq msg=6
ElectionCNTest#init:88 postgres client vote count=6

Very complete!

17

Chapter 8. Summary

In this module, we learned:

* how to more seamlessly integrate Docker and DockerCompose into unit tests using
Testcontainers library

* how to inject dynamically assigned values into the application context to allow them to be
injected into components at startup

* to execute shell commands from a JUnit test into a running container using Testcontainers
library

* to establish client connection to back-end resources from our JUnit JVM operating the unit test

o in the event that we need this information to verify test success or simply perform some
debug of the scenario

Although integration tests should never replace unit tests, the capability demonstrated in this
lecture shows how we can create very capable end-to-end tests to verify the parts will come
together correctly. For example, it was not until I wrote and executed the integration tests in this
lecture that I discovered I was accidentally using JMS queuing semantics versus topic semantics
between the two services. When I added the extra JMS listener —the Elections Service suddenly
started loosing messages. Good find!!

18

	Testcontainers
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Testcontainers Overview
	Chapter 3. Example
	3.1. Maven Dependencies
	3.2. Main Tree
	3.3. Test Tree

	Chapter 4. Example: Main Tree Artifacts
	4.1. Docker Compose File
	4.2. Docker Compose File Reference
	4.3. DockerComposeContainer
	4.4. Obtaining Runtime Port Numbers

	Chapter 5. Example: Test Tree Artifacts
	5.1. Primary NTest Setup
	5.2. Injecting Dynamically Assigned Port#s
	5.3. DynamicPropertySource
	5.4. Injections Complete prior to Tests

	Chapter 6. Exec Commands
	6.1. Exec MongoDB Command Output
	6.2. Exec Postgres Command Output

	Chapter 7. Connect to Resources
	7.1. Maven Dependencies
	7.2. Injected Clients
	7.3. URL Templates
	7.4. Providing Dynamic Resource URL Declarations
	7.5. Application Properties
	7.6. JMS Listener
	7.7. Obtain Client Status
	7.8. Client Status Output

	Chapter 8. Summary

