
Spring MVC
jim stafford

Fall 2024 v2022-07-15: Built: 2024-11-19 21:31 EST

Table of Contents
1. Introduction. 1

1.1. Goals. 1

1.2. Objectives . 1

2. Spring Web APIs . 2

2.1. Lecture/Course Focus. 2

2.2. Spring MVC. 2

2.3. Spring WebFlux. 3

2.4. Synchronous vs. Asynchronous . 3

2.5. Mixing Approaches. 4

2.6. Choosing Approaches. 5

3. Maven Dependencies. 6

4. Sample Application . 7

5. Annotated Controllers . 8

5.1. Class Mappings . 8

5.2. Method Request Mappings . 9

5.3. Default Method Response Mappings . 9

5.4. Executing Sample Endpoint . 10

6. RestTemplate Client . 12

6.1. JUnit Integration Test Setup . 12

6.2. Form Endpoint URL . 14

6.3. Obtain RestTemplate . 14

6.4. Invoke HTTP Call . 15

6.5. Evaluate Response . 15

7. Spring Rest Clients . 16

8. RestClient Client . 17

8.1. Obtain RestClient . 17

8.2. Invoke HTTP Call . 17

9. WebClient Client . 19

9.1. Obtain WebClient . 19

9.2. Invoke HTTP Call . 19

10. Spring HTTP Interface . 21

11. Implementing Parameters . 22

11.1. Controller Parameter Handling . 22

11.2. Client-side Parameter Handling . 23

11.3. Spring HTTP Interface Parameter Handling . 24

12. Accessing HTTP Responses . 25

12.1. Obtaining ResponseEntity . 25

12.2. ResponseEntity<T>. 26

13. Client Error Handling . 27

13.1. RestTemplate Response Exceptions . 27

13.2. RestClient Response Exceptions . 28

13.3. WebClient Response Exceptions . 29

13.4. Spring HTTP Interface Exceptions . 30

13.5. Client Exceptions . 30

14. Controller Responses. 32

14.1. Controller Return ResponseEntity . 32

14.2. Example ResponseEntity Responses . 33

14.3. Controller Exception Handler . 33

14.4. Simplified Controller Using ExceptionHandler. 34

15. Summary . 36

Chapter 1. Introduction
You learned the meaning of web APIs and supporting concepts in the previous lecture. This module
is an introductory lesson to get started implementing some of those concepts. Since this lecture is
primarily implementation, I will use a set of simplistic remote procedure calls (RPC) that are far
from REST-like and place the focus on making and mapping to HTTP calls from clients to services
using Spring and Spring Boot.

1.1. Goals
The student will learn to:

• identify two primary paradigms in today’s server logic: synchronous and reactive

• develop a service accessed via HTTP

• develop a client to an HTTP-based service

• access HTTP response details returned to the client

• explicitly supply HTTP response details in the service code

1.2. Objectives
At the conclusion of this lecture and related exercises, the student will be able to:

1. identify the difference between the Spring MVC and Spring WebFlux frameworks

2. identify the difference between synchronous and reactive approaches

3. identify reasons to choose synchronous or reactive

4. implement a service method with Spring MVC synchronous annotated controller

5. implement a synchronous client using RestTemplate API

6. implement a synchronous client using RestClient fluent API

7. implement a client using Spring Webflux fluent API in synchronous mode

8. pass parameters between client and service over HTTP

9. return HTTP response details from service

10. access HTTP response details in client

11. implement exception handler outside of service method

1

Chapter 2. Spring Web APIs
There are two primary, overlapping frameworks within Spring for developing HTTP-based APIs:

• Spring MVC

• Spring WebFlux

Spring MVC is the legacy framework that operates using synchronous, blocking request/reply
constructs. Spring WebFlux is the follow-on framework that builds on Spring MVC by adding
asynchronous, non-blocking constructs that are inline with the reactive streams paradigm.

2.1. Lecture/Course Focus
The focus of this lecture, module, and most portions of the course will be on synchronous
communications patterns. The synchronous paradigm is simpler, and there are a ton of API
concepts to cover before worrying about managing the asynchronous streams of the reactive
programming model. In addition to reactive concepts, Spring WebFlux brings in a heavy dose of
Java 8 lambdas and functional programming that should only be applied once we master more of
the API concepts.

However, we need to know the two approaches exist to make sense of the software and available
documentation. For example, the long-time legacy client-side of Spring MVC (i.e., RestTemplate) was
put in "maintenance mode" (minor changes and bug fixes only) towards the end of Spring 5, with
its duties fulfilled by Spring WebFlux (i.e., WebClient). Spring 6 introduced a middle ground with
RestClient that addresses the synchronous communication simplicity of RestTemplate with the
fluent API concepts of WebClient.

It is certain that you will encounter use of RestTemplate in legacy Spring applications and there is no
strong reason to replace. There is a good chance you may have the desire to work with a fluent or
reactive API. Therefore, I will be demonstrating synchronous client concepts using each library to
help cover all bases.

WebClient examples demonstrated here are intentionally synchronous

Examples of Spring WebFlux’s WebClient will be demonstrated as a synchronous
replacement for Spring MVC RestTemplate. Details of the reactive API will not be
covered.

2.2. Spring MVC
Spring MVC was originally implemented for writing Servlet-based applications. The term "MVC"
stands for "Model, View, and Controller" — which is a standard framework pattern that separates
concerns between:

• data and access to data ("the model"),

• representation of the data ("the view"), and

• decisions of what actions to perform when ("the controller").

2

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://www.reactive-streams.org/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc

The separation of concern provides a means to logically divide web application code along
architecture boundaries. Built-in support for HTTP-based APIs has matured over time, and with the
shift of UI web applications to JavaScript frameworks running in the browser, the focus has likely
shifted towards the API development.

Figure 1. Spring MVC Synchronous Model

As mentioned earlier, the programming model
for Spring MVC is synchronous, blocking
request/reply. Each active request is blocked in
its own thread while waiting for the result of the
current request to complete. This mode scales
primarily by adding more threads — most of
which are blocked performing some sort of I/O
operation.

2.3. Spring WebFlux
Spring WebFlux is built using a stream-based, reactive design as a part of Spring 5/Spring Boot 2.
The reactive programming model was adopted into the java.util.concurrent package in Java 9, to go
along with other asynchronous programming constructs — like Future<T>.

Some of the core concepts — like annotated @RestController and method associated
annotations — still exist. The most visible changes added include the optional functional controller
and the new, mandatory data input and return publisher types:

• Mono - a handle to a promise of a single object in the future

• Flux - a handle to a promise of many objects in the future

Figure 2. Spring WebFlux Reactive Model

For any single call, there is an immediate
response and then a flow of events that start
once the flow is activated by a subscriber. The
flow of events is published to and consumed
from the new mandatory Mono and Flux data
input and return types. No overall request is
completed using an end-to-end single thread.
Work to process each event must occur in a non-
blocking manner. This technique sacrifices raw
throughput of a single request to achieve better
performance when operating at a greater
concurrent scale.

2.4. Synchronous vs. Asynchronous
To go a little further in contrasting the two approaches, the diagram below depicts a contrast

3

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://projectreactor.io/docs/core/release/reference
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/package-summary.html
https://projectreactor.io/docs/core/release/reference/#mono
https://projectreactor.io/docs/core/release/reference/#mono
https://projectreactor.io/docs/core/release/reference/#flux
https://projectreactor.io/docs/core/release/reference/#flux

between a call to two separate services using the synchronous versus asynchronous processing
paradigms.

Figure 3. Synchronous

For synchronous, the call to service 2 cannot be
initiated until the synchronous call/response
from service 1 is completed

For asynchronous, the calls to service 1 and 2
are initiated sequentially but are carried out
concurrently, and completed independently

Figure 4. Asynchronous

There are different types of asynchronous processing. Spring has long supported threads with
@Async methods. However, that style simply launches one or more additional threads that
potentially also contain synchronous logic that will likely block at some point. The reactive model is
strictly non-blocking — relying on the backpressure of available data and the resources being
available to consume it. With the reactive programming paradigm comes strict rules of the road.

2.5. Mixing Approaches
There is a certain amount of mixture of approaches allowed with Spring MVC and Spring WebFlux.
A pure reactive design without a trace of Spring MVC can operate on the Reactor Netty
engine — optimized for reactive processing. Any use of Web MVC will cause the application to be
considered a Web MVC application, choose between Tomcat or Jetty for the web server, and operate
any use of reactive endpoints in a compatibility mode. [1]

With that said — functionally, we can mix Spring Web MVC and Spring WebFlux together in an
application using what is considered to be the Web MVC container.

• Synchronous and reactive flows can operate side-by-side as independent paths through the code

• Synchronous flows can make use of asynchronous flows. A primary example of that is using the
WebClient reactive methods from a Spring MVC controller-initiated flow

However, we cannot have the callback of a reactive flow make synchronous requests that can
indeterminately block — or it itself will become synchronous and tie up a critical reactor thread.

4

https://projectreactor.io/docs/netty/release/reference/index.html

Spring MVC has non-optimized, reactive compatibility

Tomcat and Jetty are Spring MVC servlet engines. Reactor Netty is a Spring
WebFlux engine. Use of reactive streams within the Spring MVC container is
supported — but not optimized or recommended beyond use of the WebClient in
Spring MVC applications. Use of synchronous flows is not supported by Spring
WebFlux.

2.6. Choosing Approaches
Independent synchronous and reactive flows can be formed on a case-by-case basis and optimized
if implemented on separate instances. [1] We can choose our ultimate solution(s) based on some of
the recommendations below.

Synchronous

• existing synchronous API working fine — no need to change [2]

• easier to learn - can use standard Java imperative programing constructs

• easier to debug - everything in the same flow is commonly in the same thread

• the number of concurrent users is a manageable (e.g., <100) number [3]

• service is CPU-intensive [4]

• codebase makes use of ThreadLocal

• service makes use of synchronous data sources (e.g., JDBC, JPA)

Reactive

• need to serve a significant number (e.g., 100-300) of concurrent users [3]

• requires knowledge of Java stream and functional programming APIs

• does little to no good (i.e., badly) if the services called are synchronous (i.e., initial response
returns when overall request complete) (e.g., JDBC, JPA)

• desire to work with Kotlin or Java 8 lambdas [2]

• service is IO-intensive (e.g., database or external service calls) [4]

For many of the above reasons, we will start out our HTTP-based API coverage in this course using
the synchronous approach.

[1] "Can I use SpringMvc and webflux together?", Brian Clozel, 2018

[2] "Spring WebFlux Documentation - Applicability", version 5.2.6 release

[3] "SpringBoot: Performance War", Santhosh Krishnan, 2020

[4] "Do’s and Don’ts: Avoiding First-Time Reactive Programmer Mines", Sergei Egorov, SpringOne Platform, 2019

5

https://stackoverflow.com/questions/53883037/can-i-use-springmvc-and-webflux-together
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-framework-choice
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-framework-choice
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-framework-choice
https://dzone.com/articles/springboot-performance-war
https://dzone.com/articles/springboot-performance-war
https://dzone.com/articles/springboot-performance-war
https://youtu.be/0rnMIueRKNU?t=1140
https://youtu.be/0rnMIueRKNU?t=1140
https://youtu.be/0rnMIueRKNU?t=1140

Chapter 3. Maven Dependencies
Most dependencies for Spring MVC are satisfied by changing spring-boot-starter to spring-boot-
starter-web. Among other things, this brings in dependencies on spring-webmvc and spring-boot-
starter-tomcat.

Spring MVC Starter Dependency

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

The dependencies for Spring MVC and Spring WebFlux’s WebClient are satisfied by adding spring-
boot-starter-webflux. It primarily brings in the spring-webflux and the reactive libraries, and
spring-boot-starter-reactor-netty. We won’t be using the netty engine, but WebClient does make
use of some netty client libraries that are brought in when using the starter.

Spring MVC/Spring WebFlux Blend Dependency

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

6

Chapter 4. Sample Application
To get started covering the basics of Web MVC, I am going to use a basic, remote procedure call
(RPC)-oriented, RMM level 1 example where the web client simply makes a call to the service to say
"hi". The example is located within the rpc-greeter-svc module.

|-- pom.xml
`-- src
 |-- main
 | |-- java
 | | `-- info
 | | `-- ejava
 | | `-- examples
 | | `-- svc
 | | `-- rpc
 | | |-- GreeterApplication.java
 | | `-- greeter
 | | `-- controllers ①
 | | `-- RpcGreeterController.java
 | `-- resources
 | `-- ...
 `-- test
 |-- java
 | `-- info
 | `-- ejava
 | `-- examples
 | `-- svc
 | `-- rpc
 | `-- greeter ②
 | |-- GreeterRestTemplateNTest.java
 | |-- GreeterRestClientNTest.java
 | |-- GreeterSyncWebClientNTest.java

 | |-- GreeterHttpIfaceNTest.java
 | |-- GreeterAPI.java

 | `-- ClientTestConfiguration.java
 `-- resources
 `-- ...

① example @RestController

② example clients using RestTemplate, RestClient, WebClient, and Http Interface Proxy

7

https://www.martinfowler.com/articles/richardsonMaturityModel.html#level1

Chapter 5. Annotated Controllers
Traditional Spring MVC APIs are primarily implemented around annotated controller components.
Spring has a hierarchy of annotations that help identify the role of the component class. In this case
the controller class will commonly be annotated with @RestController, which wraps @Controller,
which wraps @Component. This primarily means that the class will get automatically picked up
during the component scan if it is in the application’s scope.

Example Spring MVC Annotated Controller

package info.ejava.examples.svc.httpapi.greeter.controllers;

import org.springframework.web.bind.annotation.RestController;

@RestController
// ==> wraps @Controller
// ==> wraps @Component
public class RpcGreeterController {
 //...
}

5.1. Class Mappings
Class-level mappings can be used to establish a base definition to be applied to all methods and
extended by method-level annotation mappings. Knowing this, we can define the base URI path
using a @RequestMapping annotation on the controller class and all methods of this class will either
inherit or extend that URI path.

In this particular case, our class-level annotation is defining a base URL path of /rpc/greeting.

Example Class-level Mapping

...
import org.springframework.web.bind.annotation.RequestMapping;

@RestController
@RequestMapping("rpc/greeter") ①
public class RpcGreeterController {
...

① @RequestMapping.path="rpc/greeting" at class level establishes base URI path for all hosted
methods

Annotations can have alias and defaults

• value is an alias for path in the @RequestMapping annotation

• any time there is a single value expressed without a property name within an
annotation, the omitted name defaults to value

8

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html#path--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html#path--
https://docs.oracle.com/javase/tutorial/java/annotations/basics.html

We can use either path, value, or no name (when nothing else supplied) to express
the path in @RequestMapping.

Annotating class can help keep from repeating common definitions

Annotations like @RequestMapping, applied at the class level establish a base path for
all HTTP-accessible methods of the class.

5.2. Method Request Mappings
There are two initial aspects to map to our method in our first simple example: URI and HTTP
method.

Example Endpoint URI

GET /rpc/greeter/sayHi

• URI - we already defined a base URI path of /rpc/greeter at the class level — we now need to
extend that to form the final URI of /rpc/greeter/sayHi

• HTTP method - this is specific to each class method — so we need to explicitly declare GET (one
of the standard RequestMethod enums) on the class method

Example Endpoint Method Implementation

...
/**
 * This is an example of a method as simple as it gets
 * @return hi
 */
@RequestMapping(path="sayHi", ①
 method=RequestMethod.GET) ②
public String sayHi() {
 return "hi";
}

① @RequestMapping.path at the method level appends sayHi to the base URI

② @RequestMapping.method=GET registers this method to accept HTTP GET calls to the URI
/rpc/greeter/sayHi

@GetMapping is an alias for @RequestMapping(method=GET)

Spring MVC also defines a @GetMapping and other HTTP method-specific
annotations that simply wraps @RequestMapping with a specific method value (e.g.,
method=GET). We can use either form at the method level.

5.3. Default Method Response Mappings
A few of the prominent response mappings can be determined automatically by the container in

9

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMethod.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html

simplistic cases:

response body

The response body is automatically set to the marshalled value returned by the endpoint
method. In this case, it is a literal String mapping.

status code

The container will return the following default status codes

• 200/OK - if we return a non-null value

• 404/NOT_FOUND - if we return a null value

• 500/INTERNAL_SERVER_ERROR - if we throw an exception

Content-Type header

The container sensibly mapped our returned String to the text/plain Content-Type.

Example Response Mappings Result

< HTTP/1.1 200 ①
< Content-Type: text/plain;charset=UTF-8 ②
< Content-Length: 2
...
hi ③

① non-null, no exception return mapped to HTTP status 200

② non-null java.lang.String mapped to text/plain content type

③ value returned by endpoint method

5.4. Executing Sample Endpoint
Once we start our application and enter the following in the browser, we get the expected string
"hi" returned.

Example Endpoint Output

http://localhost:8080/rpc/greeter/sayHi

hi

If you have access to curl or another HTTP test tool, you will likely see the following additional
detail.

Example Endpoint HTTP Exchange

$ curl -v http://localhost:8080/rpc/greeter/sayHi
...
> GET /rpc/greeter/sayHi HTTP/1.1
> Host: localhost:8080

10

> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 200
< Content-Type: text/plain;charset=UTF-8
< Content-Length: 2
...
hi

11

Chapter 6. RestTemplate Client
The primary point of making a callable HTTP endpoint is the ability to call that endpoint from
another application. With a functional endpoint ready to go, we are ready to create a Java client
and will do so within a JUnit test using Spring MVC’s RestTemplate class in the simplest way
possible.

Please note that most of these steps are true for any Java HTTP client we might use. I will go
through all the steps for RestTemplate here but only cover the unique aspects to the alternate
techniques later on.

6.1. JUnit Integration Test Setup
We start our example by creating an integration unit test. That means we will be using the Spring
context and will do so using @SpringBootTest annotation with two key properties:

• classes - reference @Component and/or @Configuration class(es) to define which components will
be in our Spring context (default is to look for @SpringBootConfiguration, which is wrapped by
@SpringBootApplication).

• webEnvironment - to define this as a web-oriented test and whether to have a fixed (e.g., 8080),
random, or none for a port number. The random port number will be injected using the
@LocalServerPort annotation. The default value is MOCK — for Mock test client libraries able to
bypass networking.

Example JUnit Integration Unit Test Setup

package info.ejava.examples.svc.rpc.greeter;

import info.ejava.examples.svc.rpc.GreeterApplication;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.web.server.LocalServerPort;

@SpringBootTest(classes = GreeterApplication.class, ①
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT) ②
public class GreeterRestTemplateNTest {
 @LocalServerPort ③
 private int port;

① using the application to define the components for the Spring context

② the application will be started with a random HTTP port#

③ the random server port# will be injected into port annotated with @LocalServerPort

@LocalServerPort is alias for Property local.server.port

@LocalServerPort annotation acts as an alias for the local.server.port property.

package org.springframework.boot.test.web.server;
import org.springframework.beans.factory.annotation.Value;

12

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

...
@Value("${local.server.port}")
public @interface LocalServerPort {}

One could use that property instead to express the injection.

@Value("${local.server.port}")
private int port;

LocalServerPort Injection Alternatives

@LocalServerPort is not available until the web components are fully
initialized — which constrains how we can inject.

As you saw earlier, we can have it injected as an attribute of the test case class.
This would be good if many of the @Test methods needed access to the raw port
value.

Inject as Test Attribute

@SpringBootTest(...)
public class GreeterRestTemplateNTest {
 @LocalServerPort
 private int port; //inject option way1

A close alternative would be to inject the value into the @BeforeEach lifecycle
method. This would be good if @Test methods did not use the raw port value — but
may use something that was built from the value.

Inject into Test Lifecycle Methods

 @BeforeEach
 public void init(@LocalServerPort int port) { //inject option way2
 baseUrl = String.format("http://localhost:%d/rpc/greeter",
port);
 }

We could move the injection to the @TestConfiguration. However, since the
configuration is read in before the test is initialized, we must inject it into @Bean
factory methods (versus an attribute) and annotate the @Bean factory with @Lazy.
Lazy bean factories are called on demand versus eagerly at startup.

Create @Bean Factory using @LocalServerPort and @Lazy

import org.springframework.context.annotation.Lazy;
...
@TestConfiguration(proxyBeanMethods = false)
public class ClientTestConfiguration {

13

 @Bean @Lazy
 public String baseUrl(@LocalServerPort int port) {//inject option
way3
 return String.format("http://localhost:%d/rpc/greeter", port);
 }

Inject @Bean into Test Case

@SpringBootTest(classes = {GreeterApplication.class, //optionally
naming app config
 ClientTestConfiguration.class},
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class GreeterRestTemplateNTest {
 @Autowired @Qualifier("baseUrl") //qualifier makes bean selection
more explicit
 private String injectedBaseUrl; //initialized in test config using
way3

6.2. Form Endpoint URL
Next, we will form the full URL for the target endpoint. We can take the parts we know and merge
that with the injected server port number to get a full URL.

Forming endpoint URL with String.format()

@LocalServerPort
private int port;

@Test
public void say_hi() {
 //given - a service available at a URL and client access
 String url = String.format("http://localhost:%d/rpc/greeter/sayHi", port); ①
 ...

① full URL to the example endpoint

Starting Simple

Starting simple. We will be covering more type-safe, purpose-driven ways to
perform related client actions in this and follow-on lectures.

6.3. Obtain RestTemplate
With a URL in hand, we are ready to make the call. We will do that first using the synchronous
RestTemplate from the Spring MVC library.

Spring’s RestTemplate is a thread safe class that can be constructed with a default constructor for
the simple case — or through a builder in more complex cases and injected to take advantage of

14

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/web/client/RestTemplateBuilder.html

separation of concerns.

Example Obtain Simple/Default RestTemplate

import org.springframework.web.client.RestTemplate;
...
 RestTemplate restTemplate = new RestTemplate();

6.4. Invoke HTTP Call
There are dozens of potential calls we can make with RestTemplate. We will learn many more, but in
this case we are

• performing an HTTP GET

• executing the HTTP method against a URL

• returning the response body content as a
String

Example Invoke HTTP Call

String greeting = restTemplate
 .getForObject(url, String.class); ①

① return a String greeting from the response
body of a GET URL call

6.4.1. Exceptions

Note that a successful return from getForObject() will only occur if the response from the server is
a 2xx/successful response. Otherwise, an exception of one of the following types will be thrown:

• RestClientException - error occured communicating with server

◦ RestClientResponseException error response received from server

▪ HttpStatusCodeException - HTTP response received and HTTP status known

▪ HttpServerErrorException - HTTP server (5xx) errors

▪ HttpClientErrorException - HTTP client (4xx) errors

▪ BadRequest, NotFound, UnprocessableEntity, …

6.5. Evaluate Response
At this point, we have made our request and have received our reply and can evaluate the reply
against what was expected.

Evaluate Response Body

//then - we get a greeting response
then(greeting).isEqualTo("hi");

15

https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/client/RestClientException.html
https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/client/RestClientResponseException.html
https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/client/HttpStatusCodeException.html
https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/client/HttpServerErrorException.html
https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/client/HttpClientErrorException.html

Chapter 7. Spring Rest Clients
The Spring 5 documentation stated RestTemplate was going into "maintenance mode" and that we
should switchover to using the Spring WebFlux WebClient. The current Spring 6 documentation
dropped that guidance and made the choice driven by:

• synchronous - RestTemplate

• fluent and synchronous - RestClient, new in Spring 6.1

• fluent and asynchronous/reactive - WebClient

Spring 6 also added features to all three for:

• client-side API facade - HTTP Interface - provides a type-safe business interface to any of the
clients

I will summarize these additions next.

16

https://docs.spring.io/spring-framework/reference/integration/rest-clients.html
https://docs.spring.io/spring-framework/reference/integration/rest-clients.html#rest-resttemplate
https://docs.spring.io/spring-framework/reference/integration/rest-clients.html#rest-restclient
https://spring.io/blog/2023/07/13/new-in-spring-6-1-restclient
https://docs.spring.io/spring-framework/reference/integration/rest-clients.html#rest-webclient
https://docs.spring.io/spring-framework/reference/integration/rest-clients.html#rest-http-interface

Chapter 8. RestClient Client
RestClient is a synchronous API like RestTemplate, but works using fluent ("chaining";
client.m1().m2()) API calls like WebClient. The asynchronous WebClient fluent API was introduced in
Spring 5 and RestClient followed in Spring 6.1. When using WebClient in synchronous mode — the
primary difference with RestClient is no need to explicitly block for exchanges to complete.

In demonstrating RestClient, there are a few aspects of our RestTemplate example that do not
change and I do not need to repeat.

• JUnit test setup — i.e., establishing the Spring context and random port#

• Obtaining a URL

• Evaluating returned response

The new aspects include

• obtaining the RestClient instance

• invoking the HTTP endpoint and obtaining result

8.1. Obtain RestClient
RestClient is an interface and must be constructed through a builder. A default builder can be
obtained through a static method of the RestClient interface. RestClient is also thread safe, is
capable of being configured in a number of ways, and its builder can be injected to create
individualized instances.

Example Obtain RestClient

import org.springframework.web.client.RestClient;
...
 RestClient restClient = RestClient.builder().build();

If you are already invested in a detailed RestTemplate setup of configured defaults and want the
fluent API, RestClient can be constructed from an existing RestTemplate instance.

Example Building RestClient from RestTemplate

RestTemplate restTemplate = ...
RestClient restClient=RestClient.create(restTemplate);

8.2. Invoke HTTP Call
The methods for RestClient are arranged in a builder type pattern where each layer of call returns
a type with a constrained set of methods that are appropriate for where we are in the call tree.

The example below shows an example of:

17

https://spring.io/blog/2023/07/13/new-in-spring-6-1-restclient

• performing an HTTP GET

• targeting the HTTP methods at a specific URL

• retrieving an overall result — which is really
a demarcation that the request definition is
complete and from here on is the definition
for what to do with the response

• retrieving the body of the result — a
specification of the type to expect

Example Invoke HTTP Call

String greeting = restClient.get()
 .uri(url)
 .retrieve()
 .body(String.class);

18

Chapter 9. WebClient Client
WebClient and RestClient look and act very much the same, with the primary difference being the
reactive/asynchronous API aspects for WebClient.

9.1. Obtain WebClient
WebClient is an interface and must be constructed through a builder. A default builder can be
obtained through a static method of the WebClient interface. WebClient is also thread safe, is capable
of being configured in a number of ways, and its builder can be injected to create individualized
instances.

Example Obtain WebClient

import org.springframework.web.reactive.function.client.WebClient;
...
 WebClient webClient = WebClient.builder().build();

One cannot use a RestTemplate or RestClient instance to create a WebClient. They are totally
different threading models under the hood.

9.2. Invoke HTTP Call
The fluent API methods for WebClient are much the same as RestClient except for when it comes to
obtaining the payload body.

The example below shows an example of:

• performing an HTTP GET

• targeting the HTTP methods at a specific URL

• retrieving an overall result — which is really
a demarcation that the request definition is
complete and from here on is the definition
for what to do with the response

• retrieving the body of the result — a
specification of what to do with the response
when it arrives. This will be a publisher (e.g.,
Mono or Flux) of some sort of value or type
based on the response

• blocking until the reactive response is
available

Example Invoke HTTP Call

String greeting = webClient.get()
//same
 .uri(url)
//same
 .retrieve()
//same
 .bodyToMono(String.class)
 .block(); ①

① Calling block() causes the reactive flow
definition to begin producing data

The block() call is the synchronous part that we would look to avoid in a truly reactive thread. It is
a type of subscriber that triggers the defined flow to begin producing data. This block() is blocking
the current (synchronous) thread — just like RestTemplate. The portions of the call ahead of block()

19

are performed in a reactive set of threads.

20

Chapter 10. Spring HTTP Interface
This last feature (HTTP Interface) allows you to define a typed interface for your client API using a
Java interface, annotations, and any of the Spring client APIs we have just discussed. Spring will
implement the details using dynamic proxies (discussed in detail much later in the course).

We can define a simple example using our /sayHi endpoint by defining a method with the
information required to make the HTTP call. This is very similar to what is defined on the server-
side.

Example Type-safe Client Interface

import org.springframework.web.service.annotation.GetExchange;

interface MyGreeter {
 @GetExchange("/sayHi")
 String sayHi();
};

We then build a RestTemplate, RestClient, or WebClient by any means and assign it a baseUrl. The
baseUrl plus @GetExchange value must equal the server-side URL.

Build Client with Base URL

String url = ...
RestClient restClient = RestClient.builder().baseUrl(url).build();

We then can create an instance of the interface using the lower-level API, RestClientAdapter, and
HttpServiceProxyFactory.

Create Proxy

import org.springframework.web.client.support.RestClientAdapter;
import org.springframework.web.service.invoker.HttpServiceProxyFactory;
...
RestClientAdapter adapter = RestClientAdapter.create(restClient);
HttpServiceProxyFactory factory = HttpServiceProxyFactory.builderFor(adapter).build();
MyGreeter greeterAPI = factory.createClient(MyGreeter.class);

At this point we can call it like any Java instance/method.

Example Call to Spring HTTP Interface

//when - calling the service
String greeting = greeterAPI.sayHi();

The Spring HTTP Interface is extremely RPC-oriented, but we can make it REST-like enough to be
useful. Later examples in this lecture will show some extensions.

21

https://docs.spring.io/spring-framework/reference/integration/rest-clients.html#rest-http-interface

Chapter 11. Implementing Parameters
There are three primary ways to map an HTTP call to method input parameters:

• request body — annotated with @RequestBody that we will see in a POST

• path parameter — annotated with @PathVariable

• query parameter - annotated with @RequestParam

The later two are part of the next example and expressed in the URI.

Example URI with path and query parameters

 / ①
GET /rpc/greeter/say/hello?name=jim
 \ ②

① URI path segments can be mapped to input method parameters

② individual query values can be mapped to input method parameters

• we can have 0 to N path or query parameters

◦ path parameters are part of the resource URI path and are commonly required when
defined — but that is not a firm rule

◦ query parameters are commonly the technique for optional arguments against the resource
expressed in the URI path

11.1. Controller Parameter Handling
Parameters derived from the URI path require that the path be expressed with {placeholder} names
within the string. That placeholder name will be mapped to a specific method input parameter
using the @PathVariable annotation. In the following example, we are mapping whatever is in the
position held by the {greeting} placeholder — to the greeting input variable.

Specific query parameters are mapped by their name in the URL to a specific method input
parameter using the @RequestParam annotation. In the following example, we are mapping whatever
is in the value position of name= to the name input variable.

Example Path and Query Param

@RequestMapping(path="say/{greeting}", ①
 method=RequestMethod.GET)
public String sayGreeting(
 @PathVariable("greeting") String greeting, ①
 @RequestParam(value = "name", defaultValue = "you") String name) { ②
 return greeting + ", " + name;
}

22

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/PathVariable.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestParam.html

① URI path placeholder {greeting} is being mapped to method input parameter String greeting

② URI query parameter name is being mapped to method input parameter String name

No direct relationship between placeholder/query names and method input parameter
names

There is no direct correlation between the path placeholder or query parameter
name and the name of the variable without the @PathVariable and @RequestParam
mappings. Having them match makes the mental mapping easier, but the value for
the internet client URI name may not be the best value for the internal Java
controller variable name.

11.2. Client-side Parameter Handling
As mentioned above, the path and query parameters are expressed in the URL — which is not
impacted whether we use RestTemplate, RestClient, or WebClient.

Example URL with Path and Query Params

http://localhost:8080/rpc/greeter/say/hello?name=jim

A way to build a URL through type-safe convenience methods is with the UriComponentsBuilder
class. In the following example:

• fromHttpUrl() - starts the URI using a string
containing the base (e.g.
http://localhost:8080/rpc/greeter)

• path() - can be used to tack on a path to the
end of the baseUrl. replacePath() is also a
convenient method here to use when the
value you have is the full path. Note the
placeholder with {greeting} reserving a spot
in the path. The position in the URI is
important, but there is no direct relationship
between what the client and service use for
this placeholder name — if they use one at
all.

• queryParam() - is used to express individual
query parameters. The name of the query
parameter must match what is expected by
the service. Note that a placeholder was used
here to express the value.

• build() - is used to finish off the URI. We pass
in the placeholder values in the order they
appear in the URI expression

Example Client Code Forming URL with Path and
Query Params

@Test
public void say_greeting() {
 //given - a service available to
provide a greeting
 URI url = UriComponentsBuilder
.fromHttpUrl(baseUrl)
 .path("/say/{greeting}") ①
 .queryParam("name", "{name}") ②
 .build("hello", "jim"); ③

① path is being expressed using a {greeting}
placeholder for the value

② query parameter expressed using a {name}
placeholder for the value

③ values for greeting and name are filled in
during call to build() to complete the URI

23

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html
http://localhost:8080/rpc/greeter

11.3. Spring HTTP Interface Parameter Handling
We can address parameters in Spring HTTP Interface using the same @PathVariable and
RequestParam declarations that were used on the server-side. The following example shows making
each of the parameters required. Notice also that we can have the call return the ResponseEntity
wrapper versus just the value.

Using Required Client-side Parameter Values

@GetExchange("/say/{greeting}")
ResponseEntity<String> sayGreeting(
 @PathVariable(value = "greeting", required = true) String greeting,
 @RequestParam(value = "name", required=true) String name);

With the method defined, we can call it like a normal Java method and inspect the response.

//when - asking for that greeting with required parameters
... = greeterAPI.sayGreeting("hello","jim");
//response "hello, jim"

11.3.1. Optional Parameters

We can make parameters optional, allowing the client to null them out. The following example
shows the client passing in a null for the name — to have it defaulted by either the client or server-
side code.

Optional Query Parameter Call

//when - asking for that greeting using client-side or server-side defaults
... = greeterAPI.sayGreeting("hello", null);

The optional parameter can be resolved:

• on the server-side. In this case, the client marks the parameter as not required.

Using Server-side Default Parameter Value

@RequestParam(value = "name", required=false) String name);
//response "hello, you"

• on the client-side. In this case, the client identifies the default value to use.

Using Client-side default

@RequestParam(value = "name", defaultValue="client") String name);
//response "hello, client"

24

Chapter 12. Accessing HTTP Responses
The target of an HTTP response may be a specific marshalled object or successful status. However,
it is common to want to have access to more detailed information. For example:

• Success — was it a 201/CREATED or a 200/OK?

• Failure — was it a 400/BAD_REQUEST, 404/NOT_FOUND, 422/UNPROCESSABLE_ENTITY, or
500/INTERNAL_SERVER_ERROR?

Spring can supply that additional information in a ResponseEntity<T>, supplying us with:

• status code

• response headers

• response body — which will be unmarshalled to the specified type of T

To obtain that object — we need to adjust our call to the client.

12.1. Obtaining ResponseEntity
The client libraries offer additional calls to obtain the ResponseEntity.

Example RestTemplate ResponseEntity<T> Call

//when - asking for that greeting
ResponseEntity<String> response = restTemplate.getForEntity(url, String.class);

Example RestClient ResponseEntity<T> Call

//when - asking for that greeting
ResponseEntity<String> response = restClient.get()
 .uri(url)
 .retrieve()
 .toEntity(String.class);

Example WebClient ResponseEntity<T> Call

//when - asking for that greeting
ResponseEntity<String> response = webClient.get()
 .uri(url)
 .retrieve()
 .toEntity(String.class)
 .block();

Example Spring HTTP Interface Call

//when - asking for that greeting

25

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html

ResponseEntity<String> response = greeterAPI.sayGreeting("hello","jim");

12.2. ResponseEntity<T>
The ResponseEntity<T> can provide us with more detail than just the response object from the body.
As you can see from the following evaluation block, the client also has access to the status code and
headers.

Example Returned ResponseEntity<T>

//then - response be successful with expected greeting
then(response.getStatusCode()).isEqualTo(HttpStatus.OK);
then(response.getHeaders().getFirst(HttpHeaders.CONTENT_TYPE)).startsWith("text/plain"
);
then(response.getBody()).isEqualTo("hello, jim");

26

Chapter 13. Client Error Handling
As indicated earlier, something could fail in the call to the service and we do not get our expected
response returned.

Example Response Error

$ curl -v http://localhost:8080/rpc/greeter/boom
...
< HTTP/1.1 400
< Content-Type: application/json
< Transfer-Encoding: chunked
< Date: Thu, 21 May 2020 19:37:42 GMT
< Connection: close
<
{"timestamp":"2020-05-21T19:37:42.261+0000","status":400,"error":"Bad Request",
"message":"Required String parameter 'value' is not present" ①
...

① Spring MVC has default error handling that will, by default return an application/json rendering
of an error

Although there are differences in their options — RestTemplate, RestClient, and WebClient will throw
an exception if the status code is not successful. Although very similar — unfortunately, WebClient
exceptions are technically different than the others and would need separate exception handling
logic if used together.

13.1. RestTemplate Response Exceptions
RestTemplate and RestClient will throw an exception, by default for error responses.

13.1.1. Default RestTemplate Exceptions

All non-WebClient exceptions thrown extend HttpClientErrorException — which is a
RuntimeException, so handling the exception is not mandated by the Java language. The example
below is catching a specific BadRequest exception (if thrown) and then handling the exception in a
generic way.

Example RestTemplate Exception

import org.springframework.web.client.HttpClientErrorException;
...
//when - calling the service
HttpClientErrorException ex = catchThrowableOfType(①
 ()->restTemplate.getForEntity(url, String.class),
 HttpClientErrorException.BadRequest.class);

//when - calling the service
HttpClientErrorException ex = catchThrowableOfType(

27

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/HttpClientErrorException.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/HttpClientErrorException.html

 () -> restClient.get().uri(url).retrieve().toEntity(String.class),
 HttpClientErrorException.BadRequest.class);

① using assertj catchThrowableOfType() to catch the exception and test that it be of a specific type
only if thrown

catchThrowableOfType does not fail if no exception thrown

AssertJ catchThrowableOfType only fails if an exception of the wrong type is thrown.
It will return a null if no exception is thrown. That allows for a "BDD style" of
testing where the "when" processing is separate from the "then" verifications.

13.1.2. Noop RestTemplate Exceptions

RestTemplate is the only client option that allows one to bypass the exception rule and obtain an
error ResponseEntity from the call without exception handling. The following example shows a
NoOpResponseErrorHandler error handler being put in place and the caller is receiving the error
ResponseEntity without using exception handling.

Example Bypass Exceptions

//configure RestTemplate to return error responses, not exceptions
RestTemplate noExceptionRestTemplate = new RestTemplate();
noExceptionRestTemplate.setErrorHandler(new NoOpResponseErrorHandler());

//when - calling the service
Assertions.assertDoesNotThrow(()->{
 ResponseEntity<String> response = noExceptionRestTemplate.getForEntity(url,
String.class);
 //then - we get a bad request
 then(response.getStatusCode()).isEqualTo(HttpStatus.BAD_REQUEST);
 then(response.getHeaders().getFirst(HttpHeaders.CONTENT_TYPE))
 .isEqualTo(MediaType.APPLICATION_JSON_VALUE);
},"return response, not exception");

13.2. RestClient Response Exceptions
RestClient has two primary paths to invoke a request: retrieve() and exchange().

13.2.1. RestClient retrieve() and Exceptions

retrieve().toEntity(T) works very similar to RestTemplate.<method>ForEntity() — where it returns
what you ask or throws an exception. The following shows a case where the RestClient call will be
receiving an error and throwing a BadRequest exception.

Default RestClient Exception Behavior with retrieve().toEntity()

HttpClientErrorException ex = catchThrowableOfType(
 () -> restClient.get().uri(url).retrieve().toEntity(String.class),

28

 HttpClientErrorException.BadRequest.class);

13.2.2. RestClient exchange() method

exchange() permits some analysis and handling of the response within the pipeline. However, it
ultimately places you in a position that you need to throw an exception if you cannot return the
type requested or a ResponseEntity. The following example shows an error being handled without
an exception. One must be careful doing this since the error response likely will not be the data
type requested in a realistic scenario.

Example Use of exchange() to bypass Exceptions

ResponseEntity<?> response = restClient.get().uri(url)
 .exchange((req, resp) -> {
 return ResponseEntity.status(resp.getStatusCode())
 .headers(resp.getHeaders())
 .body(StreamUtils.copyToString(resp.getBody(), Charset.defaultCharset
()));
 });
then(ex.getStatusCode()).isEqualTo(HttpStatus.BAD_REQUEST);

All default RestClient exceptions thrown are identical to RestTemplate exceptions.

13.3. WebClient Response Exceptions
WebClient has the same two primary paths to invoke a request: retrieve() and exchange().
retrieve() works very similar to RestTemplate.<method>ForEntity() — where it returns what you ask
or throws an exception. exchange() permits some analysis of the response — but ultimately places
you in a position that you need to throw an exception if you cannot return the type requested.
Overriding the exception handling design of these clients is not something I would recommend, and
overriding the async API of the WebClient can be daunting. Therefore, I am just going to show the
exception handling option.

The example below is catching a specific BadRequest exception and then handling the exception in a
generic way.

Example WebClient Exception

import org.springframework.web.reactive.function.client.WebClientResponseException;
...
 //when - calling the service
 WebClientResponseException.BadRequest ex = catchThrowableOfType(
 () -> webClient.get().uri(url).retrieve().toEntity(String.class).block(),
 WebClientResponseException.BadRequest.class);

All default WebClient exceptions extend WebClientResponseException — which is also a
RuntimeException, so it has that in common with the exception handling of RestTemplate.

29

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClientResponseException.html

13.4. Spring HTTP Interface Exceptions
The Spring HTTP Interface API exceptions will be identical to RestTemplate and RestClient. Any
special handling of error responses can be done in the client error handling stack (e.g.,
RestClient.defaultStatusHandler). That will provide a means to translate the HTTP error response
into a business exception if desired.

Example Spring HTTP Interface Exception

//when - calling the service
RestClientResponseException ex = catchThrowableOfType(
 () -> greeterAPI.boom(),
 HttpClientErrorException.BadRequest.class);

13.5. Client Exceptions
Once the code calling one of the two clients has the client-specific exception object, they have access
to three key response values:

• HTTP status code

• HTTP response headers

• HTTP body as string or byte array

The following is an example of handling an exception thrown by RestTemplate and RestClient.

Example RestTemplate/RestClient Exception Inspection

HttpClientErrorException ex = ...

//then - we get a bad request
then(ex.getStatusCode()).isEqualTo(HttpStatus.BAD_REQUEST);
then(ex.getResponseHeaders().getFirst(HttpHeaders.CONTENT_TYPE))
 .isEqualTo(MediaType.APPLICATION_JSON_VALUE);
log.info("{}", ex.getResponseBodyAsString());

The following is an example of handling an exception thrown by WebClient.

Example WebClient Exception Inspection

WebClientResponseException.BadRequest ex = ...

//then - we get a bad request
then(ex.getStatusCode()).isEqualTo(HttpStatus.BAD_REQUEST);
then(ex.getHeaders().getFirst(HttpHeaders.CONTENT_TYPE)) ①
 .isEqualTo(MediaType.APPLICATION_JSON_VALUE);
log.info("{}", ex.getResponseBodyAsString());

30

① WebClient 's exception method name to retrieve response headers different from RestTemplate

31

Chapter 14. Controller Responses
In our earlier example, our only response option from the service was a limited set of status codes
derived by the container based on what was returned. The specific error demonstrated was
generated by the Spring MVC container based on our mapping definition. It will be common for the
controller method itself to need explicit control over the HTTP response returned --primarily to
express response-specific

• HTTP status code

• HTTP headers

14.1. Controller Return ResponseEntity
The following service example performs some trivial error checking and:

• responds with an explicit error if there is a problem with the input

• responds with an explicit status and Content-Location header if successful

The service provides control over the entire response by returning a ResponseEntity containing the
complete HTTP result versus just returning the result value for the body. The ResponseEntity can
express status code, headers, and the returned entity.

Example Controller Returning ResponseEntity

import org.springframework.web.servlet.support.ServletUriComponentsBuilder;
...
 @RequestMapping(path="boys",
 method=RequestMethod.GET)
 public ResponseEntity<String> createBoy(@RequestParam("name") String name) { ①
 try {
 someMethodThatMayThrowException(name);

 String url = ServletUriComponentsBuilder.fromCurrentRequest() ②
 .build().toUriString();
 return ResponseEntity.ok() ③
 .header(HttpHeaders.CONTENT_LOCATION, url)
 .body(String.format("hello %s, how do you do?", name));
 } catch (IllegalArgumentException ex) {
 return ResponseEntity.unprocessableEntity() ④
 .body(ex.toString());
 }
 }
 private void someMethodThatMayThrowException(String name) {
 if ("blue".equalsIgnoreCase(name)) {
 throw new IllegalArgumentException("boy named blue?");
 }
 }

32

① ResponseEntity returned used to express full HTTP response

② ServletUriComponentsBuilder is a URI builder that can provide context of current call

③ service is able to return an explicit HTTP response with appropriate success details

④ service is able to return an explicit HTTP response with appropriate error details

14.2. Example ResponseEntity Responses
In response, we see the explicitly assigned status code and Content-Location header.

Example ResponseEntity Success Returned

curl -v http://localhost:8080/rpc/greeter/boys?name=jim
...
< HTTP/1.1 200 ①
< Content-Location: http://localhost:8080/rpc/greeter/boys?name=jim ②
< Content-Type: text/plain;charset=UTF-8
< Content-Length: 25
...
hello jim, how do you do?

① status explicitly

② Content-Location header explicitly supplied by service

For the error condition, we see the explicit status code and error payload assigned.

Example ResponseEntity Error Returned

$ curl -v http://localhost:8080/rpc/greeter/boys?name=blue
...
< HTTP/1.1 422 ①
< Content-Type: text/plain;charset=UTF-8
< Content-Length: 15
...
boy named blue?

① HTTP status code explicitly supplied by service

14.3. Controller Exception Handler
We can make a small but significant step at simplifying the controller method by making sure the
exception thrown is fully descriptive and moving the exception handling to either:

• a separate, annotated method of the controller or

• globally to be used by all controllers (shown later).

The following example uses @ExceptionHandler annotation to register a handler for when controller
methods happen to throw the IllegalArgumentException. The handler can return an explicit

33

ResponseEntity with the error details.

Example Controller ExceptionHandler

import org.springframework.web.bind.annotation.ExceptionHandler;
...
 @ExceptionHandler(IllegalArgumentException.class) ①
 public ResponseEntity<String> handle(IllegalArgumentException ex) {②
 return ResponseEntity.unprocessableEntity() ③
 .body(ex.getMessage());
 }

① handles all IllegalArgumentEception-s thrown by controller method (or anything it calls)

② input parameter is concrete type or parent type of handled exception

③ handler builds a ResponseEntity with the details of the error

Create custom exceptions to address specific errors

Create custom exceptions to the point that the handler has the information and
context it needs to return a valuable response.

14.4. Simplified Controller Using ExceptionHandler
With all exceptions addressed by ExceptionHandlers, we can free our controller methods of tedious,
repetitive conditional error reporting logic and still return an explicit HTTP response.

Example Controller Method using ExceptionHandler

@RequestMapping(path="boys/throws",
 method=RequestMethod.GET)
public ResponseEntity<String> createBoyThrows(@RequestParam("name") String name) {
 someMethodThatMayThrowException(name); ①

 String url = ServletUriComponentsBuilder.fromCurrentRequest()
 .replacePath("/rpc/greeter/boys") ②
 .build().toUriString();

 return ResponseEntity.ok()
 .header(HttpHeaders.CONTENT_LOCATION, url)
 .body(String.format("hello %s, how do you do?", name));
}

① Controller method is free from dealing with exception logic

② replacing a path to match sibling implementation response

Note the new method endpoint with the exception handler returns the same, explicit HTTP
response as the earlier example.

34

Example ExceptionHandler Response

curl -v http://localhost:8080/rpc/greeter/boys/throws?name=blue
...
< HTTP/1.1 422
< Content-Type: text/plain;charset=UTF-8
< Content-Length: 15
...
boy named blue?

35

Chapter 15. Summary
In this module we:

• identified two primary paradigms (synchronous and reactive) and web frameworks (Spring
MVC and Spring WebFlux) for implementing web processing and communication

• implemented an HTTP endpoint for a URI and method using Spring MVC annotated controller in
a fully synchronous mode

• demonstrated how to pass parameters between client and service using path and query
parameters

• demonstrated how to pass return results from service to client using http status code, response
headers, and response body

• demonstrated how to explicitly set HTTP responses in the service

• demonstrated how to clean up service logic by using exception handlers

• demonstrated use of the synchronous Spring MVC RestTemplate and RestClient and reactive
Spring WebFlux WebClient client APIs

• demonstrated use of Spring HTTP Interface to wrap low-level client APIs with a type-safe,
business interface

36

	Spring MVC
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Spring Web APIs
	2.1. Lecture/Course Focus
	2.2. Spring MVC
	2.3. Spring WebFlux
	2.4. Synchronous vs. Asynchronous
	2.5. Mixing Approaches
	2.6. Choosing Approaches

	Chapter 3. Maven Dependencies
	Chapter 4. Sample Application
	Chapter 5. Annotated Controllers
	5.1. Class Mappings
	5.2. Method Request Mappings
	5.3. Default Method Response Mappings
	5.4. Executing Sample Endpoint

	Chapter 6. RestTemplate Client
	6.1. JUnit Integration Test Setup
	6.2. Form Endpoint URL
	6.3. Obtain RestTemplate
	6.4. Invoke HTTP Call
	6.5. Evaluate Response

	Chapter 7. Spring Rest Clients
	Chapter 8. RestClient Client
	8.1. Obtain RestClient
	8.2. Invoke HTTP Call

	Chapter 9. WebClient Client
	9.1. Obtain WebClient
	9.2. Invoke HTTP Call

	Chapter 10. Spring HTTP Interface
	Chapter 11. Implementing Parameters
	11.1. Controller Parameter Handling
	11.2. Client-side Parameter Handling
	11.3. Spring HTTP Interface Parameter Handling

	Chapter 12. Accessing HTTP Responses
	12.1. Obtaining ResponseEntity
	12.2. ResponseEntity<T>

	Chapter 13. Client Error Handling
	13.1. RestTemplate Response Exceptions
	13.2. RestClient Response Exceptions
	13.3. WebClient Response Exceptions
	13.4. Spring HTTP Interface Exceptions
	13.5. Client Exceptions

	Chapter 14. Controller Responses
	14.1. Controller Return ResponseEntity
	14.2. Example ResponseEntity Responses
	14.3. Controller Exception Handler
	14.4. Simplified Controller Using ExceptionHandler

	Chapter 15. Summary

