Simple Spring Boot Application
jim stafford

Fall 2024 v2023-06-25: Built: 2024-11-19 21:30 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Spring Boot Maven Dependencies
3. Parent POM
3.1. Define Version for Spring Boot artifacts
3.2. Import springboot-dependencies-plugin
4. Local Child/Leaf Module POM
4.1. Declare pom inheritance in the child pom.xml
4.2. Declare dependency on artifacts used
5. Simple Spring Boot Application Java Class
5.1. Module Source Tree
5.2. @SpringBootApplication Aggregate Annotation
6. Spring Boot Executable JAR
6.1. Building the Spring Boot Executable JAR
6.2. Java MANIFEST.MF properties
6.3. JAR size
6.4. JAR Contents
6.5. Execute Command Line
7. Add a Component to Output Message and Args
7.1. @Component Annotation
7.2. Interface: CommandLineRunner
7.3. @ComponentScan Tree
8. Running the Spring Boot Application
8.1. Implementation Note
9. Configure pom.xml to Test
9.1. Execute JAR as part of the build

10. Summary

© 00 00 O U1 U1 b W W N B = =

T T S e S S g N S Y
© 0 00 g o Ul uulw NN R, O O

Chapter 1. Introduction

This material makes the transition from a creating and executing a simple Java main application to
a Spring Boot application.

1.1. Goals

The student will learn:

» foundational build concepts for simple, Spring Boot Application

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:
1. extend the standard Maven jar module packaging type to include core Spring Boot
dependencies
2. construct a basic Spring Boot application
3. build and execute an executable Spring Boot JAR

4. define a simple Spring component and inject that into the Spring Boot application

Chapter 2. Spring Boot Maven Dependencies

Spring Boot provides a spring-boot-starter-parent (gradle source, pom.xml) pom that can be used
as a parent pom for our Spring Boot modules. "' This defines version information for dependencies
and plugins for building Spring Boot artifacts — along with an opinionated view of how the module
should be built.

spring-boot-starter-parent inherits from a spring-boot-dependencies (gradle source, pom.xml) pom
that provides a definition of artifact versions without an opinionated view of how the module is
built. This pom can be imported by modules that already inherit from a local Maven
parent — which would be common. This is the demonstrated approach we will take here. We will
also include demonstration of how the build constructs are commonly spread across parent and
local poms.

o Spring Boot has converted over to gradle and posts a pom version of the gradle
artifact to Maven central repository as a part of their build process.

[1] Spring Boot and Build Systems, Pivotal

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/
https://repo.maven.apache.org/maven2/org/springframework/boot/spring-boot-starter-parent/3.3.2/spring-boot-starter-parent-3.3.2.pom
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/
https://repo.maven.apache.org/maven2/org/springframework/boot/spring-boot-dependencies/3.3.2/spring-boot-dependencies-3.3.2.pom
https://repo.maven.apache.org/maven2/org/springframework/boot/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using.build-systems

Chapter 3. Parent POM

We are likely to create multiple Spring Boot modules and would be well-advised to begin by
creating a local parent pom construct to house the common passive definitions. By passive
definitions (versus active declarations), I mean definitions for the child poms to use if needed
versus mandated declarations for each child module. For example, a parent pom may define the
JDBC driver to use when needed but not all child modules will need a JDBC driver nor a database
for that matter. In that case, we do not want the parent pom to actively declare a dependency. We
just want the parent to passively define the dependency that the child can optionally choose to
actively declare. This construct promotes consistency among all the modules.

Parent POM
properties __J passive ™

dependencyManagement Fﬂ"| definitions
pluginManagement

/A

Child PGM

Child POM

properties
dependencies
plugins

properties
dependencies
plugins

| active
r=—-.| declarations

Figure 1. Parent/Child Pom Relationship and Responsibilities

"Root"/parent poms should define dependencies and plugins for consistent re-use
(;) among child poms and use dependencyManagement and pluginManagement
elements to do so.

(r) "Child"/concrete/leaf poms declare dependencies and plugins to be used when
- building that module and try to keep dependencies to a minimum.

"Prototype" poms are a blend of root and child pom concepts. They are a nearly-

o concrete, parent pom that can be extended by child poms but actively declare a
select set of dependencies and plugins to allow child poms to be as terse as
possible.

3.1. Define Version for Spring Boot artifacts

Define the version for Spring Boot artifacts to use. I am using a technique below of defining the
value in a property so that it is easy to locate and change as well as re-use elsewhere if necessary.

Explicit Property Definition
Place this declaration in an inherited parent pom

<properties>
<springboot.version>3.3.2</springboot.version> ®

</properties>
@ default value has been declared in imported ejava-build-bom

(r') Property values can be overruled at build time by supplying a system property on
- the command line "-D(name)=(value)"

3.2. Import springboot-dependencies-plugin

Import springboot-dependencies-plugin. This will define dependencyManagement for us for many
artifacts that are relevant to our Spring Boot development.

Place this declaration in an inherited parent pom
<dependencyManagement> M
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${springboot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

@ import is within examples-root for class examples, which is a grandparent of this example

Chapter 4. Local Child/Leaf Module POM

The local child module pom.xml is where the module is physically built. Although Maven modules
can have multiple levels of inheritance —where each level is a child of their parent—the child
module I am referring to here is the leaf module where the artifacts are meant to be really built.
Everything defined above it is primarily used as a common definition (through
dependencyManagement and pluginManagement) to simplify the child pom.xml and to promote
consistency among sibling modules. It is the job of the leaf module to activate these definitions that
are appropriate for the type of module being built.

4.1. Declare pom inheritance in the child pom.xml

Declare pom inheritance in the child pom.xml to pull in definitions from parent pom.xml.

Place this declaration in the child/leaf pom building the JAR archive
<parent>

<groupId>(parent groupId)</groupIld>

<artifactId>(parent artifactId)</artifactId>

<version>(parent version)</version>
</parent>

The following diagram shows the parent/child relationship between the springboot-app-example and
the class-example-root pom and the parent’s relationships.

ejava-build-parent

A

lextends
|
[

class-examples root

A

lextends
|

imports > ejava-build-bom | imports > spring-boot-dependencies

<parent=

via | app-build root, app root |

=groupld=info.ejava.examples</groupld=

—— < artifactld=>examples-root</artifactid=>
=<wersion=6.1.0-SMNAPSHOT< fvaersion=

I
I
|
|
r—_—
I
I
|
|
|
I
I
|

springboot-app-example

</parent=

<parent=
=groupld=info.ejava.examples.app</groupld=

— <artifactld=app-build< artifactid=

<version=6.1.0-SNAPSHOT< fversion=

</parent=

Figure 2. SpringBoot App Example POM Tree

4.2. Declare dependency on artifacts used

Realize the parent definition of the spring-boot-starter dependency by declaring it within the child
dependencies section. For where we are in this introduction, only the above dependency will be
necessary. The imported spring-boot-dependencies will take care of declaring the version#

Place this declaration in the child/leaf pom building the JAR archive

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<l--version --> @

</dependency>
</dependencies>

@ parent has defined (using import in this case) the version for all children to consistently use

The figure below shows the parent poms being the source of the passive dependency definitions
and the child being the source of the active dependency declarations.

* the parent is responsible for defining the version# for dependencies used

* the child is responsible for declaring what dependencies are needed and adopts the parent

version definition

An upgrade to a future dependency version should not require a change of a child module
declaration if this pattern is followed.

<dependencyManagement>
=dependencies=>
=dependency=
< groupld=org.springframework boot</groupld=
< artifactld=spring-boot-starter</artifactid=
<wversion=3.3.2<fversion>
['X =/dependency>
=/dependencies=
</dependencyManagement>

ejava-build-parent

extends |

class-examples root | IMports | ejava-build-bom imports > spring-boot-dependencies:3.3.2

i |
' |

I extends via |
lappbuild-root, springboot version=3.3.2
|
| app-root
[
[
|
|
| <dependencies=>
! =dependency=
springboot-app-example | | =groupld=org.springframework.boot</groupld=
=artifactld=spring-boot-starter</artifactid=
=/dependency=>
</dependencies=

Figure 3. Class Examples dependencyManagement

Chapter 5. Simple Spring Boot Application
Java Class

With the necessary dependencies added to our build classpath, we now have enough to begin
defining a simple Spring Boot Application.

package info.ejava.springboot.examples.app.build.springboot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

®
public class SpringBootApp {
public static void main(String... args) { ®
System.out.println("Running SpringApplication”);

SpringApplication.run(SpringBootApp.class, args); @

System.out.println("Done SpringApplication");

@ Define a class with a static main() method

@ Initiate Spring application bootstrap by invoking SpringApplication.run() and passing a)
application class and b) args passed into main()

® Annotate the class with @SpringBootApplication

o Startup can, of course be customized (e.g., change the printed banner, registering
event listeners)

5.1. Module Source Tree

The source tree will look similar to our previous Java main example.

|-- pom.xml
‘-- src
|-- main
| |-- java
| | ‘-- info
|] ‘-- ejava
|| ‘-~ examples
| ‘-~ app
| ‘-~ build
|| ‘-~ springboot
|] ‘-~ SpringBootApp.java
| ‘-- resources

https://www.logicbig.com/tutorials/spring-framework/spring-boot/using-event-listener.html

‘-~ test
|-- java
‘-- resources

5.2. @SpringBootApplication Aggregate Annotation

import org.springframework.boot.autoconfigure.SpringBootApplication;

public class SpringBootApp {
}

The @SpringBootApplication annotation is a compound class-level annotation aggregating the
following annotations.

» @ComponentScan - legacy Spring annotation that configures component scanning to include or
exclude looking through various packages for classes with component annotations

o By default, scanning will start with the package declaring the annotation and work its way
down from there

» @SpringBootConfiguration - like legacy Spring @Configuration annotation, it signifies the class
can provide configuration information. Unlike @Configuration, there can be only one
@SpringBootConfiguration per application, and it is normally supplied by @SpringBootApplication
except in some integration tests.

o Classes annotated with @Configuration contain factory @Bean definitions.

* @EnableAutoConfiguration - Allows Spring to perform autoconfiguration based on the
classpath, beans defined by the application, and property settings.

The class annotated with @SpringBootApplication is commonly located in a Java
package that is above all other Java packages containing components for the
application.

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringBootConfiguration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html

Chapter 6. Spring Boot Executable JAR

At this point we can likely execute the Spring Boot Application within the IDE but instead, lets go
back to the pom and construct a JAR file to be able to execute the application from the command
line.

6.1. Building the Spring Boot Executable JAR

We saw earlier how we could build a standard executable JAR using the maven-jar-plugin. However,
there were some limitations to that approach — especially the fact that a standard Java JAR cannot
house dependencies to form a self-contained classpath and Spring Boot will need additional JARSs to
complete the application bootstrap. Spring Boot uses a custom executable JAR format that can be
built with the aid of the spring-boot-maven-plugin. Let’s extend our pom.xml file to enhance the
standard JAR to be a Spring Boot executable JAR.

6.1.1. Declare spring-boot-maven-plugin

The following snippet shows the configuration for a spring-boot-maven-plugin that defines a default
execution to build the Spring Boot executable JAR for all child modules that declare using it. In
addition to building the Spring Boot executable JAR, we are setting up a standard in the parent for
all children to have their follow-on JAR classified separately as a bootexec. classifier is a core
Maven construct and is meant to label sibling artifacts to the original Java JAR for the module.
Other types of classifiers are source, schema, javadoc, etc. bootexec is a value we made up.

o bootexec is a value we made up.

By default, the repackage goal would have replaced the Java JAR with the Spring Boot executable
JAR. That would have left an ambiguous JAR artifact in the repository — we would not easily know
its JAR type. This will help eliminate dependency errors during the semester when we layer N+1
assignments on top of layer N. Only standard Java JARs can be used in classpath dependencies.

spring-boot-maven-plugin with classifier

<properties>
<spring-boot.classifier>bootexec</spring-boot.classifier>
</properties>
<build>
<pluginManagement>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<classifier>${spring-boot.classifier}</classifier> @
</configuration>
<executions>
<execution>

10

https://docs.spring.io/spring-boot/docs/current/maven-plugin/

<id>build-app</id> @
<phase>package</phase> @
<goals>
<goal>repackage</goal> ®

</qoals>

</execution>

</executions>
</plugin>

</plugins>
</pluginManagement>
</build>

@ id used to describe execution and required when having more than one

@ phase identifies the maven goal in which this plugin runs

® repackage identifies the goal to execute within the spring-boot-maven-plugin
@ adds a -bootexec to the executable JAR’s name

We can do much more with the spring-boot-maven-plugin on a per-module basis (e.g., run the
application from within Maven). We are just starting at construction at this point.

6.1.2. Build the JAR

$ mvn clean package
[INFO] Scanning for projects...

[INFO] --- maven-jar-plugin:3.4.2:jar (default-jar) @ springboot-app-example ---
[INFO] Building jar: .../target/springboot-app-example-6.1.0-SNAPSHOT.jar @
[INFO]

[INFO] --- spring-boot-maven-plugin:3.3.2:repackage (build-app) @ springboot-app-
example ---

[INFO] Attaching repackaged archive .../target/springboot-app-example-6.1.0-SNAPSHOT-
bootexec.jar with classifier bootexec @

@ standard Java JAR is built by the maven-jar-plugin

@ standard Java JAR is augmented by the spring-boot-maven-plugin

6.2. Java MANIFEST.MF properties

The spring-boot-maven-plugin augmented the standard JAR by adding a few properties to the
MANIFEST.MF file

$ unzip -qc target/springboot-app-example-6.1.0-SNAPSHOT-bootexec.jar META-
INF/MANIFEST.MF
Manifest-Version: 1.0

11

Created-By: Maven JAR Plugin 3.2.2

Build-Jdk-Spec: 17

Main-Class: org.springframework.boot.loader.launch.JarLauncher @
Start-Class: info.ejava.examples.app.build.springboot.SpringBootApp @
Spring-Boot-Version: 3.3.2

Spring-Boot-Classes: BOOT-INF/classes/

Spring-Boot-Lib: BOOT-INF/1ib/

Spring-Boot-Classpath-Index: BOOT-INF/classpath.idx
Spring-Boot-Layers-Index: BOOT-INF/layers.idx

® Main-Class was set to a Spring Boot launcher

@ Start-Class was set to the class we defined with @SpringBootApplication

6.3. JAR size

Notice that the size of the Spring Boot executable JAR is significantly larger the original standard
JAR.

$ 1s -1h target/*jar* | grep -v sources | cut -d\ -f9-99
10M Aug 28 15:19 target/springboot-app-example-6.1.0-SNAPSHOT-bootexec.jar @
4.3K Aug 28 15:19 target/springboot-app-example-6.1.0-SNAPSHOT.jar @

@ The original Java JAR with Spring Boot annotations was 4.3KB
@ The Spring Boot JAR is 10MB

6.4. JAR Contents

Ref: spring.io Appendix E. The Executable Jar Format

Unlike WARs, a standard Java JAR does not provide a standard way to embed dependency JARs.
Common approaches to embed dependencies within a single JAR include a "shaded" JAR where all
dependency JAR are unwound and packaged as a single "uber" JAR
* positives
o works
- follows standard Java JAR constructs
* negatives
- obscures contents of the application

o problem if multiple source JARs use files with same path/name

Spring Boot creates a custom WAR-like structure

BOOT-INF/classes/info/ejava/examples/app/build/springboot/AppCommand.class
BOOT-INF/classes/info/ejava/examples/app/build/springboot/SpringBootApp.class @
BOOT-INF/1ib/javax.annotation-api-2.1.1.jar @

12

https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://maven.apache.org/plugins/maven-shade-plugin/

BOOT-INF/1ib/spring-boot-3.3.2.jar
BOOT-INF/1ib/spring-context-6.1.11.jar
BOOT-INF/1ib/spring-beans-6.1.11.jar
BOOT-INF/1ib/spring-core-6.1.11.jar

META-INF/MANIFEST.MF
META-INF/maven/info.ejava.examples.app/springboot-app-example/pom.properties
META-INF/maven/info.ejava.examples.app/springboot-app-example/pom.xml
org/springframework/boot/loader/launch/ExecutableArchivelauncher.class @
org/springframework/boot/1loader/launch/JarLauncher.class

org/springframework/boot/loader/util/SystemPropertyUtils.class

@ Spring Boot loader classes hosted at the root /
@ Local application classes hosted in /B00T-INF/classes
® Dependency JARs hosted in /BOOT-INF/1ib

Spring Boot can also use a standard WAR structure —to be deployed to a web
server.

* 99% of'it is a standard WAR
o /WEB-INF/classes
o o /WEB-INF/1ib
» Spring Boot loader classes hosted at the root /

 Special directory for dependencies only used for non-container deployment

o /WEB-INF/1ib-provided

6.5. Execute Command Line

springboot-app-example$ java -jar target/springboot-app-example-6.1.0-SNAPSHOT-
bootexec.jar @
Running SpringApplication @

R _ ___®
NN/ ' R G PR W W W
CON__ "2\ VYNV
ANV | I U I B O A I A I GH R IR IR I B
S N PO U O U I DN B A A A
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v3.3.2)

2019-12-04 09:01:03.014 INFO 1287 --- [main] i.e.e.a.build.springboot.SpringBootApp:
\

Starting SpringBootApp on Jamess-MBP with PID 1287 (.../springboot-app-
example/target/springboot-app-example-6.1.0-SNAPSHOT.jar \

13

started by jim in .../springboot-app-example)
2019-12-04 09:01:03.017 INFO 1287 --- [main] i.e.e.a.build.springboot.SpringBootApp:
\

No active profile set, falling back to default profiles: default
2019-12-04 09:01:03.416 INFO 1287 --- [main] i.e.e.a.build.springboot.SpringBootApp:
\

Started SpringBootApp in 0.745 seconds (JVM running for 1.13)
Done SpringApplication @

@ Execute the JAR using the java -jar command
@ Main executes and passes control to SpringApplication
® Spring Boot bootstrap is started

@ SpringApplication terminates and returns control to our main()

14

Chapter 7. Add a Component to Output
Message and Args

We have a lot of capability embedded into our current Spring Boot executable JAR that is there to
bootstrap the application by looking around for components to activate. Let’s explore this capability
with a simple class that will take over the responsibility for the output of a message with the
arguments to the program.

We want this class found by Spring’s application startup processing, so we will:

// AppCommand. java
package info.ejava.examples.app.build.springboot; @

import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;
import java.util.List;

@
public class AppCommand implements CommandLineRunner {
public void run(String... args) throws Exception {
System.out.println("Component code says Hello

+ List.of(args));
}

@ Add a @Component annotation on the class

@ Place the class in a Java package configured to be scanned
7.1. @Component Annotation

import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;

public class AppCommand implements CommandLineRunner {

Classes can be configured to have their instances managed by Spring. Class annotations can be used
to express the purpose of a class and to trigger Spring into managing them in specific ways. The
most generic form of component annotation is @Component. Others will include @Repository,
@Controller, etc. Classes directly annotated with a @Component (or other annotation) indicates that
Spring can instantiate instances of this class with no additional assistance from a @Bean factory.

7.2. Interface: CommandLineRunner

import org.springframework.boot.CommandLineRunner;

15

import org.springframework.stereotype.Component;

@Component

public class AppCommand implements CommandLineRunner {
public void run(String... args) throws Exception {

}

* Components implementing CommandLineRunner interface get called after application
initialization
* Program arguments are passed to the run() method
* Can be used to perform one-time initialization at start-up
* Alternative Interface: ApplicationRunner
- Components implementing ApplicationRunner are also called after application initialization

o Program arguments are passed to its run() method have been wrapped in
ApplicationArguments convenience class

@ Component startup can be ordered with the @Ordered Annotation.

7.3. @ComponentScan Tree

By default, the @SpringBootApplication annotation configured Spring to look at and below the Java
package for our SpringBootApp class. I chose to place this component class in the same Java
package as the application class

@SpringBootApplication

// @ComponentScan

// @SpringBootConfiguration
// @EnableAutoConfiguration
public class SpringBootApp {

¥
src/main/java
‘-~ info

‘-- ejava
‘-- springboot
‘-~ examples
“-- app
|-- AppCommand.java
‘-~ SpringBootApp.java

16

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/CommandLineRunner.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationRunner.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationArguments.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/Ordered.html

Chapter 8. Running the Spring Boot
Application

$ java -jar target/springboot-app-example-6.1.0-SNAPSHOT-bootexec.jar

Running SpringApplication @®

. _ ___®

VANV G E W W W
CON_ 22\ 2V YNV

AV J B 10 1 A O 1 O B B IO RO

S N PR U O D I DO N B A A A

=== NE==—————C W

:: Spring Boot :: (v3.3.2)
2019-09-06 15:56:45.666 INFO 11480 --- [main]

i.e.s.examples.app.SpringBootApp

: Starting SpringBootApp on Jamess-MacBook-Pro.local with PID 11480
(.../target/springboot-app-example-6.1.0-SNAPSHOT.jar ...)
2019-09-06 15:56:45.668 INFO 11480 --- [main]
i.e.s.examples.app.SpringBootApp

: No active profile set, falling back to default profiles: default
2019-09-06 15:56:46.146 INFO 11480 --- [main]
i.e.s.examples.app.SpringBootApp

: Started SpringBootApp in 5.791 seconds (JVM running for 6.161) ®
Hello [] ONO)
Done SpringApplication ®

® Our SpringBootApp.main() is called and logs Running SpringApplication
@ SpringApplication.run() is called to execute the Spring Boot application

® Our AppCommand component is found within the classpath at or under the package declaring
@SpringBootApplication

@ The AppCommand component run() method is called, and it prints out a message
® The Spring Boot application terminates

® Our SpringBootApp.main() logs Done SpringApplication an exits

8.1. Implementation Note

I added print statements directly in the Spring Boot Application’s main() method to
help illustrate when calls were made. This output could have been packaged into

o listener callbacks to leave the main() method implementation free —except to
register the callbacks. If you happen to need more complex behavior to fire before
the Spring context begins initialization, then look to add listeners of the
SpringApplication instead.

17

https://www.logicbig.com/tutorials/spring-framework/spring-boot/using-event-listener.html

Chapter 9. Configure pom.xml to Test

At this point we are again ready to set up an automated execution of our JAR as a part of the build.
We can do that by adding a separate goal execution of the spring-boot-maven-plugin.

<build>
<plugins>
<plugin>

<groupld>org.springframework.boot</groupId>

<artifactId>spring-boot-maven-plugin</artifactId>

<executions>

<execution>
<id>run-application</id> @
<phase>integration-test</phase>
<goals>
<goal>run</goal>
</goals>
<configuration> @
<arguments>Maven,plugin-supplied,args</arquments>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

@ new execution of the run goal to be performed during the Maven integration-test phase

@ command line arguments passed to main
* Phase order

1. ..
. package

. pre-integration

. post-integration

2

3

4. integration-test
5

6. verify

7

9.1. Execute JAR as part of the build

$ mvn clean verify
[INFO] Scanning for projects...

[INFO] --- spring-boot-maven-plugin:3.3.2:run (run-application) @ springboot-app-

18

example ---
[INFO] Attaching agents: [] @
Running SpringApplication

VAN NVZRER R G I W W W

(GG) N I I I I VAR I U U W

ANV I I U B B O I I A G IR D IR I I
ol NN

=== NE=—==—=—=—=—=CCl

:: Spring Boot :: (v3.3.2)

2022-07-02 14:11:46.110 INFO 48432 --- [main]

i.e.e.a.build.springboot.SpringBootApp : Starting SpringBootApp using Java 17.0.3 on
Jamess-MacBook-Pro.local with PID 48432 (.../springboot-app-example/target/classes
started by jim in .../springboot-app-example)

2022-07-02 14:11:46.112 INFO 48432 --- [main]
i.e.e.a.build.springboot.SpringBootApp : No active profile set, falling back to 1
default profile: "default"

2022-07-02 14:11:46.463 INFO 48432 --- [main]
i.e.e.a.build.springboot.SpringBootApp : Started SpringBootApp in 0.611 seconds (JVM
running for 0.87)

Component code says Hello [Maven, plugin-supplied, args] @

Done SpringApplication

@ Our plugin is executing

@ Our application was executed and the results displayed

Chapter 10. Summary

As a part of this material, the student has learned how to:

1.
2.

20

Add Spring Boot constructs and artifact dependencies to the Maven POM
Define Application class with a main() method

Annotate the application class with @SpringBootApplication (and optionally use lower-level
annotations)

Place the application class in a Java package that is at or above the Java packages with beans
that will make up the core of your application

Add component classes that are core to your application to your Maven module

Typically, define components in a Java package that is at or below the Java package for the
SpringBootApplication

Annotate components with @Component (or other special-purpose annotations used by Spring)

Execute application like a normal executable JAR

	Simple Spring Boot Application
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Spring Boot Maven Dependencies
	Chapter 3. Parent POM
	3.1. Define Version for Spring Boot artifacts
	3.2. Import springboot-dependencies-plugin

	Chapter 4. Local Child/Leaf Module POM
	4.1. Declare pom inheritance in the child pom.xml
	4.2. Declare dependency on artifacts used

	Chapter 5. Simple Spring Boot Application Java Class
	5.1. Module Source Tree
	5.2. @SpringBootApplication Aggregate Annotation

	Chapter 6. Spring Boot Executable JAR
	6.1. Building the Spring Boot Executable JAR
	6.2. Java MANIFEST.MF properties
	6.3. JAR size
	6.4. JAR Contents
	6.5. Execute Command Line

	Chapter 7. Add a Component to Output Message and Args
	7.1. @Component Annotation
	7.2. Interface: CommandLineRunner
	7.3. @ComponentScan Tree

	Chapter 8. Running the Spring Boot Application
	8.1. Implementation Note

	Chapter 9. Configure pom.xml to Test
	9.1. Execute JAR as part of the build

	Chapter 10. Summary

