Spring Data MongoDB Repository

jim stafford

Fall 2024 v2022-07-25: Built: 2024-11-19 21:37 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Spring Data MongoDB Repository
3. Spring Data MongoDB Repository Interfaces
4. BooksRepository
4.1. Book @Document
4.2. BooksRepository
5. Configuration
5.1. Injection
6. CrudRepository
6.1. CrudRepository save() New
6.2. CrudRepository save() Update Existing
6.3. CrudRepository save()/Update Resulting MongoDB Command
6.4. CrudRepository existsById()
6.5. CrudRepository findById()
6.6. CrudRepository delete()
6.7. CrudRepository deleteById()
6.8. Other CrudRepository Methods
7. PagingAndSortingRepository
7.1. Sorting
7.2. Paging
7.3. Page Result
7.4. Slice Properties
7.5. Page Properties
7.6. Stateful Pageable Creation
7.7. Page Iteration
8. Query By Example
8.1. Example Object
8.2. findAll By Example
8.3. Ignoring Properties
8.4. Contains ExampleMatcher
9. Derived Queries
9.1. Single Field Exact Match Example
9.2. Query Keywords
9.3. Other Keywords
9.4. Multiple Fields
9.5. Collection Response Query Example

© 00 I J 0 O O Ul Ul R R R W N R

N T T S e S S T S e S Y
O ©W W W W 00 ~J O O U1 T b b W W NN R R o o

9.6. Slice Response Query Example
9.7. Page Response Query Example
10. @Query Annotation Queries
10.1. @Query Annotation Attributes
10.2. @Query Sort and Paging
11. MongoRepository Methods
12. Custom Queries
12.1. Custom Query Interface
12.2. Repository Extends Custom Query Interface
12.3. Custom Query Method Implementation
12.4. Repository Implementation Postfix
12.5. Helper Methods
12.6. Naive Injections
12.7. Required Injections
12.8. Calling Custom Query
12.9. Implementing Aggregation

13. Summary

20
21
23
23
24
25
26
26
26
26
27
27
28
28
28
29
30

Chapter 1. Introduction

MongoTemplate provided a lot of capability to interface with the database, but with a significant
amount of code required. Spring Data MongoDB Repository eliminates much of the boilerplate code
for the most common operations and allows us access to MongoTemplate for the harder edge-cases.

Due to the common Spring Data framework between the two libraries and the
resulting similarity between Spring Data JPA and Spring Data MongoDB
repositories, this lecture is about 95% the same as the Spring Data JPA lecture.

o Although it is presumed that the Spring Data JPA lecture precedes this lecture — it
was written so that was not a requirement. If you have already mastered Spring
Data JPA Repositories, you should be able to quickly breeze through this material
because of the significant similarities in concepts and APISs.

1.1. Goals

The student will learn:

* to manage objects in the database using the Spring Data MongoDB Repository

* to leverage different types of built-in repository features

* to extend the repository with custom features when necessary

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1.

2
3
4.
5
6

declare a MongoRepository for an existing @Document

. perform simple CRUD methods using provided repository methods

. add paging and sorting to query methods

implement queries based on POJO examples and configured matchers

. implement queries based on predicates derived from repository interface methods

. implement a custom extension of the repository for complex or compound database access

Chapter 2. Spring Data MongoDB Repository

Spring Data MongoDB provides repository support for @ocument-based mappings. "' We start off by
writing no mapping code —just interfaces associated with our @Document and primary key
type —and have Spring Data MongoDB implement the desired code. The Spring Data MongoDB
interfaces are layered — offering useful tools for interacting with the database. Our primary
@Document types will have a repository interface declared that inherit from MongoRepository and any
custom interfaces we optionally define.

Figure 1. Spring Data MongoDB Repository Interfaces

The extends path was modified some with the latest version of Spring Data Commons, but the
MongoRepository ends up being mostly the same by the time the interfaces get merged at the bottom
of the inheritance tree.

[1] "Spring Data MongoDB - Reference Documentation”

https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#preface
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#preface

Chapter 3. Spring Data MongoDB Repository

Interfaces

As we go through these interfaces and methods, please remember that all of the method
implementations of these interfaces (except for custom) will be provided for us.

Repository<T, ID>

CrudRepository<T,ID>

PagingAndSortingRepository<T,
ID>

ListPagingAndSortingRepository<
T,ID>

ListCrudRepository

QueryByExampleExecutor<T>

MongoRepository<T, ID>

BooksRepositoryCustom/
BooksRepositoryCustomImpl

BooksRepository

marker interface capturing the @Document class and primary
key type. Everything extends from this type.

depicts many of the CRUD capabilities we demonstrated with
the MongoOps DAO in previous MongoTemplate lecture

Spring Data MongoDB provides some nice end-to-end support
for sorting and paging. This interface adds some sorting and
paging to the findA11() query method provided in
CrudRepository.

overrides the PagingAndSorting-based Iterable<T> return type
tobe a List<T>

overrides all CRUD-based Iterable<T> return types with
List<T>

provides query-by-example methods that use prototype
@Document instances and configured matchers to locate
matching results

brings together the CrudRepository,
PagingAndSortingRepository, and QueryByExampleExecutor
interfaces and adds several methods of its own. The methods
declared are mostly generic to working with
repositories—only the insert() methods have any specific
meaning to MongoDB.

we can write our own extensions for complex or compound
calls—while taking advantage of an MongoTemplate and
existing repository methods. This allows us to encapsulate
details of update() methods and Aggregation Pipeline as well
as other MongoTemplate interfaces like GridFS and
Geolocation searches.

our repository inherits from the repository hierarchy and
adds additional methods that are automatically implemented
by Spring Data MongoDB

@Document is not Technically Required

Technically, the @Document annotation is not required unless mapping to a non-

- default collection. However, @Document will continue to be referenced in this
lecture to mean the "subject of the repository".

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/PagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/PagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListPagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListPagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListCrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/query/QueryByExampleExecutor.html
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/repository/MongoRepository.html
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-mongo/mongo-book-example/src/main/java/info/ejava/examples/db/mongo/books/repo/BookRepositoryCustom.java?ref_type=heads
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-mongo/mongo-book-example/src/main/java/info/ejava/examples/db/mongo/books/repo/BookRepositoryCustomImpl.java?ref_type=heads
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-mongo/mongo-book-example/src/main/java/info/ejava/examples/db/mongo/books/repo/BooksRepository.java?ref_type=heads

Chapter 4. BooksRepository

All we need to create a functional repository is a @Document class and a primary key type. The
@Document annotation is optional and only required to specify a collection name different from the
class name. From our work to date, we know that our @Document is the Book class and the primary
key is the primitive String type. This type works well with MongoDB auto-generated IDs.

4.1. Book @Document

Book @Document Example

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

(collection = "books")
public class Book {

private String id;
Multiple @Id Annotations, Use Spring Data’s @Id Annotation

The @Id annotation looks the same as the JPA @Id, but instead comes from the
(r) Spring Data package

import org.springframework.data.annotation.Id;

4.2. BooksRepository

We declare our repository to extend MongoRepository.

public interface BooksRepository extends MongoRepository<Book, String> {}@® @

@ Book is the repository type
@ String is used for the primary key type

(,) Consider Using Non-Primitive Primary Key Types
- You will find that Spring Data MongoDB works easier with nullable object types.

Chapter 5. Configuration

Assuming your repository classes are in a package below the class annotated with
@SpringBootApplication—not much is else is needed. Adding @EnableMongoRepositories is necessary
when working with more complex classpaths.

Typical MongoDB Repository Support Declaration

public class MongoDBBooksApp {

If your repository is not located in the default packages scanned, their packages can be scanned
with configuration options to the @EnableMongoRepositories annotation.

Configuring Repository Package Scanning

(basePackageClasses = {BooksRepository.class}) @ @

@ the Java class provided here is used to identify the base Java package

@ where to scan for repository interfaces

5.1. Injection

With the repository interface declared and the Mongo repository support enabled, we can then
successfully inject the repository into our application.

BooksRepository Injection

private BooksRepository booksRepository;

Chapter 6. CrudRepository

Lets start looking at the capability of our repository — starting with the declared methods of the
CrudRepository interface.

CrudRepository<T, ID> Interface

public interface CrudRepository<T, ID> extends Repository<T, ID> {
<S extends T> S save(S);
<S extends T> Iterable<S> saveAll(Iterable<S>);
Optional<T> findById(ID);
boolean existsById(ID);
Iterable<T> findAl1();
Iterable<T> findA11ById(Iterable<ID>);
long count();
void deleteById(ID);
void delete(T);
void deleteAl1ById(Iterable<? extends ID>);
void deleteAll(Iterable<? extends T>);
void deleteAll();
}

public interface ListCrudRepository<T, ID> extends CrudRepository<T, ID> {
<S extends T> List<S> saveAll(Iterable<S>);
List<T> findAll();
List<T> findA11ById(Iterable<ID>);

}

6.1. CrudRepository save() New

We can use the CrudRepository.save() method to either create or update our @Document instance in
the database. It has a direct correlation to MongoTemplate’s save() method so there is not much
extra functionality added by the repository layer.

In this specific example, we call save() with an object with an unassigned primary key. The primary
key will be generated by the database when inserted and assigned to the object by the time the
command completes.

CrudRepository.save() New Example

//given a transient document instance
Book book = ...
assertThat(book.getId()).isNull(); @®
//when persisting
booksRepo.save(book);

//then document is persisted
then(book.getId()).isNotNull(); @

@ document not yet assigned a generated primary key

@ primary key assigned by database

6.2. CrudRepository save() Update Existing

The CrudRepository.save() method is an "upsert" method.

+ if the @Document is new it will be inserted
 if a @Document exists with the currently assigned primary key, the original contents will be

replaced

CrudRepository.save() Update Existing Example

//given a persisted document instance

Book book = ...
booksRepo.save(book); @
Book updatedBook = book.withTitle("new title"); @

//when persisting update

booksRepo.save(updatedBook);

//then new document state is persisted

then(booksRepo.findOne(Example.of(updatedBook))).isPresent(); ®
@ object inserted into database — resulting in primary key assigned

@ a separate instance with the same ID has modified title

® object’s new state is found in database

6.3. CrudRepository save()/Update Resulting MongoDB
Command

Watching the low-level MongoDB commands, we can see that Mongo’s built-in upsert capability
allows the client to perform the action without a separate query.

MongoDB Update Command Performed with Upsert

update{"q":{"_id":{"$oid":"606cbfc0932e084392422bb6"}}, @®
"u"i{"_id":{"$01d":"606cbfc0932e084392422bb6"},"title": "new title","author":...},

"multi":false,
"upsert":true} @

@ filter looks for ID

@ insert if not exist, update if exists

6.4. CrudRepository existsByld()

The repository adds a convenience method that can check whether the @Document exists in the
database without already having an instance or writing a criteria query.

The following snippet demonstrates how we can check for the existence of a given ID.

CrudRepository existsByld()

//given a persisted document instance

Book pojoBook = ...

booksRepo.save(pojoBook);

//when - determining if document exists

boolean exists = booksRepo.existsById(pojoBook.getId());
//then

then(exists).isTrue();

The resulting MongoDB command issued a query for the ID, limiting the results to a single result,
and a projection with only the primary key contained.

CrudRepository existsByld() SQL

query: { _id: ObjectId('606cc5d742931870e951e08e"') }
sort: {}
projection: {} @
collation: { locale: \"simple\" }
limit: 1

@ projection: {} returns only the primary key

6.5. CrudRepository findByld()

If we need the full object, we can always invoke the findById() method, which should be a thin
wrapper above MongoTemplate.find(), except that the return type is a Java Optional<T> versus the
@Document type (T).

CrudRepository.findByld()

//given a persisted document instance

Book pojoBook = ...

booksRepo.save(pojoBook);

//when - finding the existing document

Optional<Book> result = booksRepo.findById(pojoBook.getId()); @
//then

then(result.isPresent()).isTrue();

@ findById() always returns a non-null Optional<T> object

6.5.1. CrudRepository findByld() Found Example

The Optional<T> can be safely tested for existence using isPresent(). If isPresent() returns true,
then get() can be called to obtain the targeted @Document.

Present Optional Example

//given

then(result).isPresent();

//when - obtaining the instance

Book dbBook = result.get();

//then - instance provided

then(dbBook).isNotNull();

//then - database copy matches initial P0JO
then(dbBook.getAuthor()).isEqualTo(pojoBook.getAuthor());
then(dbBook.getTitle()).isEqualTo(pojoBook.getTitle());
then(pojoBook.getPublished()).1isEqualTo(dbBook.getPublished());

6.5.2. CrudRepository findById() Not Found Example

If isPresent() returns false, then get() will throw a NoSuchElementException if called. This gives
your code some flexibility for how you wish to handle a target @Document not being found.

Missing Optional Example

//then - the optional can be benignly tested

then(result).isNotPresent();

//then - the optional is asserted during the get()

assertThatThrownBy(() -> result.get())
.isInstance0f(NoSuchElementException.class);

6.6. CrudRepository delete()

The repository also offers a wrapper around MongoTemplate.remove() that accepts an instance.
Whether the instance existed or not, a successful call will always result in the @Document no longer
in the database.

CrudRepository delete() Example

//when - deleting an existing instance
booksRepo.delete(existingBook);

//then - instance will be removed from DB
then(booksRepo.existsById(existingBook.getId())).isFalse();

6.6.1. CrudRepository delete() Not Exist
If the instance did not exist, the delete() call silently returns.

CrudRepository delete() Does Not Exists Example

//when - deleting a non-existing instance
booksRepo.delete(doesNotExist);

6.7. CrudRepository deleteById()

The repository also offers a convenience deleteById() method taking only the primary key.

CrudRepository deleteByld() Example

//when - deleting an existing instance
booksRepo.deleteById(existingBook.getId());

6.8. Other CrudRepository Methods

That was a quick tour of the CrudRepository<T,ID> interface methods. The following snippet shows
the methods not covered. Most provide convenience methods around the entire repository.

Other CrudRepository Methods

//public interface CrudRepository<T, ID> extends Repository<T, ID> {
<S extends T> Iterable<S> saveAll(Iterable<S>);

Iterable<T> findAll();

Iterable<T> findA11ById(Iterable<ID>);

long count();

void deleteAll(Iterable<? extends T>);

void deleteAll();

//public interface ListCrudRepository<T, ID> extends CrudRepository<T, ID> {
<S extends T> List<S> saveAll(Iterable<S>);

List<T> findAl1();

List<T> findA11ById(Iterable<ID>);

10

Chapter 7. PagingAndSortingRepository

Before we get too deep into queries, it is good to know that Spring Data MongoDB has first-class

support for sorting and paging.

* sorting - determines the order which matching results are returned

» paging - breaks up results into chunks that are easier to handle than entire database collections

Here is a look at the declared methods of the PagingAndSortingRepository<T,ID> interface. This

defines extra parameters for the CrudRepository.findAll() methods.
PagingAndSortingRepository<T,ID> Interface

public interface PagingAndSortingRepository<T, ID> extends CrudRepository<T, ID> {
Iterable<T> findA11l(Sort var1);
Page<T> findAll(Pageable var1);

We will see paging and sorting option come up in many other query types as well.

Use Paging and Sorting for Collection Queries

All queries that return a collection should seriously consider adding paging and

@ sorting parameters. Small test databases can become significantly populated
production databases over time and cause eventual failure if paging and sorting is
not applied to unbounded collection query return methods.

7.1. Sorting
Sorting can be performed on one or more properties and in ascending and/or descending order.
The following snippet shows an example of calling the findA11() method and having it return

* Book entities in descending order according to published date

* Book entities in ascending order according to id value when published dates are equal

Sort.by() Example

//when
List<Book> byPublished = booksRepository.findA11(
Sort.by("published").descending().and(Sort.by("id").ascending()));® @
//then
LocalDate previous = null;
for (Book s: byPublished) {
if (previous!=null) {
then(previous).isAfterOrEqualTo(s.getPublished()); //DESC order

}
previous=s.getPublished();

11

@ results can be sorted by one or more properties

@ order of sorting can be ascending or descending

The following snippet shows how the MongoDB command was impacted by the Sort.by()
parameter.

Sort.by() Example MongoDB Command

query: {}
sort: { published: -1, _id: 1 } @
projection: {}

@ Sort.by() added the extra sort parameters to MongoDB command

7.2. Paging

Paging permits the caller to designate how many instances are to be returned in a call and the
offset to start that group (called a page or slice) of instances.

The snippet below shows an example of using one of the factory methods of Pageable to create a
PageRequest definition using page size (limit), offset, and sorting criteria. If many pages will be
traversed — it is advised to sort by a property that will produce a stable sort over time during table
modifications.

Defining Initial Pageable

//given

int offset = 0;
int pageSize = 3;

Pageable pageable = PageRequest.of(offset/pageSize, pageSize, Sort.by("published"));D
//when

Page<Book> bookPage = booksRepository.findAll(pageable);

@ using PageRequest factory method to create Pageable from provided page information

Use Stable Sort over Large Collections

(r') Try to use a property for sort (at least by default) that will produce a stable sort
- when paging through a large collection to avoid repeated or missing objects from
follow-on pages because of new changes to the table.

7.3. Page Result

The page result is represented by a container object of type Page<T>, which extends Slice<T>. I will
describe the difference next, but the PagingAndSortingRepository<T,ID> interface always returns a
Page<T>, which will provide:

12

* the sequential number of the page/slice

= . T

@ Slice
* the requested size of the page/slice

number
e the number of elements found size

. . elements
* the total number of elements available in the
database
wextendss

@ Page if

totalElements

Figure 2. Page<T> Extends Slice<T>

7.4. Slice Properties

The Slice<T> base interface represents properties about the content returned.

Slice Properties

//then

Slice bookSlice = bookPage; @

then(bookSlice).isNotNull();
then(bookSlice.isEmpty()).isFalse();
then(bookSlice.getNumber()).isEqualTo(0); @
then(bookSlice.getSize()).isEqualTo(pageSize); ®
then(bookSlice.getNumberOfElements()).isEqualTo(pageSize); @

List<Book> booksList = bookSlice.getContent();
then(booksList).hasSize(pageSize);

@ Page<T> extends Slice<T>
@ slice increment — first slice is 0
® the number of elements requested for this slice

@ the number of elements returned in this slice

7.5. Page Properties
The Page<T> derived interface represents properties about the entire collection/table.

The snippet below shows an example of the total number of elements in the table being made
available to the caller.

Page Properties

then(bookPage.getTotalElements()).isEqualTo(savedBooks.size());

13

7.6. Stateful Pageable Creation

In the above example, we created a Pageable from stateless parameters. We can also use the original
Pageable to generate the next or other relative page specifications.

Relative Pageable Creation
Pageable pageable = PageRequest.of(offset / pageSize, pageSize, Sort.by("published"));

Pageable next = pageable.next();
Pageable previous = pageable.previousOrFirst();
Pageable first = pageable.first();

7.7. Page Iteration

The next Pageable can be used to advance through the complete set of query results, using the
previous Pageable and testing the returned Slice.

Page Iteration

for (int i=1; bookSlice.hasNext(); i++) { @
pageable = pageable.next(); @
bookSlice = booksRepository.findAll(pageable);
booksList = bookSlice.getContent();
then(bookS1lice).isNotNull();
then(bookSlice.getNumber()).isEqualTo(i);
then(bookSlice.getSize()).isEqualTo(pageSize);
then(bookSlice.getNumberOfElements()).isLessThanOrEqualTo(pageSize);
then(((Page)bookSlice).getTotalElements()).isEqualTo(savedBooks.size());//unique
to Page
}
then(bookSlice.hasNext()).isFalse();
then(bookSlice.getNumber()).isEqualTo(booksRepository.count() / pageSize);

@ Slice.hasNext() will indicate when previous Slice represented the end of the results

@ next Pageable obtained from previous Pageable

14

Chapter 8. Query By Example

Not all queries will be as simple as findA11(). We now need to start looking at queries that can
return a subset of results based on them matching a set of predicates. The
QueryByExampleExecutor<T> parent interface to MongoRepository<T,ID> provides a set of variants to
the collection-based results that accepts an "example" to base a set of predicates off of.

QueryByExampleExecutor<T> Interface

public interface QueryByExampleExecutor<T> {

<S extends T> Optional<S> findOne(Example<S>);

<S extends T> Iterable<S> findA11(Example<S>);

<S extends T> Iterable<S> findAl1(Example<S>, Sort);

<S extends T> Page<S> findA11(Example<S>, Pageable);

<S extends T> long count(Example<S>);

<S extends T> boolean exists(Example<S>);

<S extends T, R> R findBy(Example<S>, Function<FluentQuery$FetchableFluentQuery<S>,
R>);
}

8.1. Example Object

An Example is an interface with the ability to hold onto a probe and matcher.

8.1.1. Probe Object
The probe is an instance of the repository @Document type.

The following snippet is an example of creating a probe that represents the fields we are looking to
match.

Probe Example

//given

Book savedBook = savedBooks.get(0);

Book probe = Book.builder()
.title(savedBook.getTitle())
.author (savedBook.getAuthor())
.build(); @

@ probe will carry values for title and author to match

8.1.2. ExampleMatcher Object

The matcher defaults to an exact match of all non-null properties in the probe. There are many
definitions we can supply to customize the matcher.

» ExampleMatcher.matchingAny() - forms an OR relationship between all predicates

15

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#query-by-example

» ExampleMatcher.matchingAll() - forms an AND relationship between all predicates

The matcher can be broken down into specific fields, designing a fair number of options for String-
based predicates but very limited options for non-String fields.

» exact match e contains
* case insensitive match * regular expression
e starts with, ends with * include or ignore nulls

The following snippet shows an example of the default ExampleMatcher.

Default ExampleMatcher
ExampleMatcher matcher = ExampleMatcher.matching(); @

@ default matcher is matchingAll

8.2. findAll By Example

We can supply an Example instance to the findA11() method to conduct our query.

The following snippet shows an example of using a probe with a default matcher. It is intended to
locate all books matching the author and title we specified in the probe.

//when

List<Book> foundBooks = booksRepository.findAll(
Example.of(probe),//default matcher is matchingAll() and non-null
Sort.by("id"));

The default matcher ends up working perfectly with our @Document class because a nullable primary
key was used — keeping the primary key from being added to the criteria.

8.3. Ignoring Properties

If we encounter any built-in types that cannot be null—we can configure a match to explicitly
ignore certain fields.

The following snippet shows an example matcher configured to ignore the primary key.

matchingAll ExampleMatcher with Ignored Property

ExampleMatcher ignoreld = ExampleMatcher.matchingAl1l().withIgnorePaths("id");®
//when
List<Book> foundBooks = booksRepository.findA1l1(
Example.of(probe, ignoreld), @
Sort.by("id"));
//then
then(foundBooks).isNotEmpty();

16

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#query-by-example.matchers

then(foundBooks.get(0).getId()).isEqualTo(savedBook.getId());

@ id primary key is being excluded from predicates

@ non-null and non-id fields of probe are used for AND matching

8.4. Contains ExampleMatcher

We have some options on what we can do with the String matches.

The following snippet provides an example of testing whether title contains the text in the probe
while performing an exact match of the author and ignoring the id field.

Contains ExampleMatcher

Book probe = Book.builder()
.title(savedBook.getTitle().substring(2))
.author(savedBook.getArtist())
.build();
ExampleMatcher matcher = ExampleMatcher
.matching()
.withIgnorePaths("id")
.withMatcher("title", ExampleMatcher.GenericPropertyMatchers.contains());

8.4.1. Using Contains ExampleMatcher

The following snippet shows that the Example successfully matched on the Book we were interested
in.

Example is Found

//when

List<Book> foundBooks=booksRepository.findA11(Example.of(probe,matcher), Sort.by("id"
));

//then

then(foundBooks).isNotEmpty();
then(foundBooks.get(0).getId()).isEqualTo(savedBook.getId());

17

Chapter 9. Derived Queries

For fairly straight forward queries, Spring Data MongoDB can derive the required commands from
a method signature declared in the repository interface. This provides a more self-documenting
version of similar queries we could have formed with query-by-example.

The following snippet shows a few example queries added to our repository interface to address
specific queries needed in our application.

Example Query Method Names

public interface BooksRepository extends MongoRepository<Book, String> {
Optional<Book> getByTitle(String title); @

List<Book> findByTitleNullAndPublishedAfter(LocalDate date); @

List<Book> findByTitleStartingWith(String string, Sort sort); ®
Slice<Book> findByTitleStartingWith(String string, Pageable pageable); @
Page<Book> findPageByTitleStartingWith(String string, Pageable pageable); ®

@ query by an exact match of title

@ query by a match of two fields (title and released)
® query using sort

@ query with paging support

® query with paging support and table total

Let’s look at a complete example first.

9.1. Single Field Exact Match Example

In the following example, we have created a query method getByTitle that accepts the exact match
title value and an Optional return value.

Interface Method Signature

Optional<Book> getByTitle(String title); @
We use the declared interface method in a normal manner and Spring Data MongoDB takes care of
the implementation.

Interface Method Usage

//when

Optional<Book> result = booksRepository.getByTitle(book.getTitle());
//then

then(result.isPresent()).isTrue();

18

The result is essentially the same as if we implemented it using query-by-example or more directly
through the MongoTemplate.

9.2. Query Keywords

Spring Data has several keywords, followed by By, that it looks for starting the interface method
name. Those with multiple terms can be used interchangeably.

Meaning Keywords
Query « find . get « search
* read * query * stream
Count * count
Exists * exists
Delete ¢ delete
* remove

9.3. Other Keywords

Other keywords are clearly documented in the JPA reference "

* Distinct (e.g., findDistinctByTitle)

* Is, Equals (e.g., findByTitle, findByTitlels, findByTitleEquals)

* Not (e.g., findByTitleNot, findByTitleIsNot, findByTitleNotEquals)

* IsNull, IsNotNull (e.g., findByTitle(null), findByTitleIsNull(), findByTitleIsNotNull())

o StartingWith, EndingWith, Containing (e.g., findByTitleStartingWith, findByTitleEndingWith,
‘findByTitleContaining)

* LessThan, LessThanEqual, GreaterThan, GreaterThanEqual, Between (e.g., findByIdLessThan,
findByIdBetween(1lo,hi))

» Before, After (e.g., findByPublishedAfter)
* In (e.g., findByTitleIn(collection))
* OrderBy (e.g., findByTitleContainingOrderByTitle)

The list is significant, but not meant to be exhaustive. Perform a web search for your specific needs
(e.g., "Spring Data Derived Query ...") if what is needed is not found here.

9.4. Multiple Fields

We can define queries using one or more fields using And and Or.

The following example defines an interface method that will test two fields: title and published.
title will be tested for null and published must be after a certain date.

19

https://github.com/spring-projects/spring-data-commons/blob/3.3.1/src/main/java/org/springframework/data/repository/query/parser/PartTree.java#L61

Multiple Fields Interface Method Declaration

List<Book> findByTitleNullAndPublishedAfter(LocalDate date);

The following snippet shows an example of how we can call/use the repository method. We are
using a simple collection return without sorting or paging.

Multiple Fields Example Use

//when

List<Book> foundBooks = booksRepository.findByTitleNullAndPublishedAfter(firstBook
.getPublished());

//then

Set<String> foundIds = foundBooks.stream().map(s->s.getId()).collect(Collectors.toSet

());
then(foundIds).isEqualTo(expectedIds);

9.5. Collection Response Query Example

We can perform queries with various types of additional arguments and return types. The
following shows an example of a query that accepts a sorting order and returns a simple collection
with all objects found.

Collection Response Interface Method Declaration

List<Book> findByTitleStartingWith(String string, Sort sort);

The following snippet shows an example of how to form the Sort and call the query method derived
from our interface declaration.

Collection Response Interface Method Use

//when

Sort sort = Sort.by("id").ascending();

List<Book> books = booksRepository.findByTitleStartingWith(startingWith, sort);
//then

then(books.size()).isEqualTo(expectedCount);

9.6. Slice Response Query Example

Derived queries can also be declared to accept a Pageable definition and return a Slice. The
following example shows a similar interface method declaration to what we had prior — except we
have wrapped the Sort within a Pageable and requested a Slice, which will contain only those items
that match the predicate and comply with the paging constraints.

20

Slice Response Interface Method Declaration

Slice<Book> findByTitleStartingWith(String string, Pageable pageable);

The following snippet shows an example of forming the PageRequest, making the call, and
inspecting the returned Slice.

Slice Response Interface Method Use

//when

PageRequest pageable=PageRequest.of(@, 1, Sort.by("id").ascending());® @
Slice<Book> booksSlice=booksRepository.findByTitleStartingWith(startingWith,pageable);
//then

then(booksSlice.getNumberOfElements()).isEqualTo(pageable.getPageSize());

@ pageNumber is 0
@ pageSizeis 1

9.7. Page Response Query Example

We can alternatively declare a Page return type if we also need to know information about all
available matches in the table. The following shows an example of returning a Page. The only
reason Page shows up in the method name is to form a different method signature than its sibling
examples. Page is not required to be in the method name.

Page Response Interface Method Declaration

Page<Book> findPageByTitleStartingWith(String string, Pageable pageable); @

@ the Page return type (versus Slice) triggers an extra query performed to supply totalElements
Page property

The following snippet shows how we can form a PageRequest to pass to the derived query method
and accept a Page in reponse with additional table information.

Page Response Interface Method Use

//when

PageRequest pageable
Page<Book> booksPage
pageable);

//then
then(booksPage.getNumberOfElements()).isEqualTo(pageable.getPageSize());
then(booksPage.getTotalElements()).isEqualTo(expectedCount); @

PageRequest.of(@, 1, Sort.by("id").ascending());
booksRepository.findPageByTitleStartingWith(startingWith,

@ an extra property is available to tell us the total number of matches relative to the entire
table — that may not have been reported on the current page

[1] "Query Creation", Spring Data JPA - Reference Documentation

21

https://docs.spring.io/spring-data/data-jpa/docs/current-SNAPSHOT/reference/html/#jpa.query-methods.query-creation
https://docs.spring.io/spring-data/data-jpa/docs/current-SNAPSHOT/reference/html/#jpa.query-methods.query-creation

[2] "Derived Query Methods in Spring Data JPA", Atta

22

https://attacomsian.com/blog/derived-query-methods-spring-data-jpa

Chapter 10. @Query Annotation Queries

Spring Data MongoDB provides an option for the query to be expressed on the repository method.

The following example will locate a book published between the provided dates —inclusive. The
default derived query implemented it exclusive of the two dates. The @Query annotation takes
precidence over the default derived query. This shows how easy it is to define a customized version
of the query.

Example @Query

("{ 'pUb-I.-iShed': { $gte: 70, $1te: 21 } }n) @
List<Book> findByPublishedBetween(LocalDate starting, LocalDate ending);

@ 70 is the first parameter (starting) and ?1 is the second parameter (ending)

The following snippet shows an example of implementing a query using a regular expression
completed by the input parameters. It locates all books with titles greater-than or equal to the
length parameter. It also declares that only the title field of the Book instances need to be
returned — making the result smaller.

Query Supplied on Repository Method

(value="{ 'title': /A.{70,}$/ }", fields="{'_id':0, 'title':1}") ® @
List<Book> getTitlesGESizeAsBook(int length);

@ value expresses which Books should match

@ fields expresses which fields should be returned and populated in the instance

Named Queries can be supplied in property file

Named queries can also be expressed in a property file—versus being placed
directly onto the method. Property files can provide a more convenient source for
O expressing more complex queries.

(namedQueriesLocation="...")

The default location is META-INF/mongo-named-queries.properties

10.1. @Query Annotation Attributes

The matches in the query can be used for more than just find. We can alternately apply count,
exists, or delete and include information for fields projected, sort, and collation.

Table 1. @Query Annotation Attributes

23

https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/repository/config/EnableMongoRepositories.html#namedQueriesLocation

Attribute
String fields

boolean count

boolean exists

boolean delete

String sort

String collation

Default

false

false

false

Description Example
projected fields fields = "{ title : 1 }"

count() action performed on query
matches

exists() action performed on query
matches

delete() action performed on query
matches

sort expression for query results sort = "{ published : -1 }"

location information

10.2. @Query Sort and Paging

The @Query approach supports paging via Pageable parameter. Sort must be defined using the
@Query.sort property.

@Query Sort and Paging

(value="{ 'published': { $qte: 70, $1te: 21 } }", sort = "{ '_id':1 }")
Page<Book> findByPublishedBetween(LocalDate starting, LocalDate ending, Pageable

pageable);

24

Chapter 11. MongoRepository Methods

Many of the methods and capabilities of the MongoRepository<T,ID> are available at the higher level
interfaces. The MongoRepository<T, ID> itself declares two types of additional methods
* insert/upsert state-specific optimizations

* return type extensions

MongoRepository<T, ID> Interface

<S extends T> S insert(S); @
<S extends T> List<S> insert(Iterable<S>);

<S extends T> List<S> findA11(Example<S>); @
<S extends T> List<S> findA11(Example<S>, Sort);
public default Iterable findAl1(Example, Sort);
public default Iterable findAll(Example);

@ insert is specific to MongoRepository and assumes the document is new

@ List<T> is a sub-type of Iterable<T> and provides a richer set of inspection methods for the
returned result from QueryByExample methods

25

Chapter 12. Custom Queries

Sooner or later, a repository action requires some complexity that is beyond the ability to leverage
a single query-by-example or derived query. We may need to implement some custom logic or may
want to encapsulate multiple calls within a single method.

12.1. Custom Query Interface

The following example shows how we can extend the repository interface to implement custom
calls using the MongoTemplate and the other repository methods. Our custom implementation will
return a random Book from the database.

Interface for Public Custom Query Methods

public interface BooksRepositoryCustom {
Optional<Book> random();

}

12.2. Repository Extends Custom Query Interface

We then declare the repository to extend the additional custom query interface — making the new
method(s) available to callers of the repository.

Repository Implements Custom Query Interface

public interface BooksRepository extends MongoRepository<Book, String>,
BooksRepositoryCustom { @

@ added additional BookRepositoryCustom interface for BookRepository to extend

12.3. Custom Query Method Implementation

Of course, the new interface will need an implementation. This will require at least two lower-level
database calls

1. determine how many objects there are in the database

2. return an instance for one of those random values

The following snippet shows a portion of the custom method implementation. Note that two
additional helper methods are required. We will address them in a moment. By default, this class
must have the same name as the interface, followed by "Impl".

Custom Query Method Implementation

public class BookRepositoryCustomImpl implements BookRepositoryCustom {
private final SecureRandom random = new SecureRandom();

26

public Optional<Book> random() {
Optional randomBook = Optional.empty();
int count = (int) booksRepository.count(); @

if (count!=0) {

int offset = random.nextInt(count);

List<Book> books = books(offset, 1); @

randomBook=books.isEmpty() ? Optional.empty() : Optional.of(books.get(0));
}

return randomBook;

® leverages CrudRepository.count() helper method

@ leverages a local, private helper method to access specific Book

12.4. Repository Implementation Postfix

If you have an alternate suffix pattern other than "Impl" in your application, you can set that value
in an attribute of the @EnableMongoRepositories annotation.

The following shows a declaration that sets the suffix to its normal default value (i.e., we did not
have to do this). If we changed this value from "Impl" to "Xxx", then we would need to change
BooksRepositoryCustomImpl to BooksRepositoryCustomXxx

Optional Custom Query Method Implementation Suffix

(repositoryImplementationPostfix="Impl")®D

@ Impl is the default value. Configure this attribute to use non-Impl postfix

12.5. Helper Methods

The custom random() method makes use of two helper methods. One is in the CrudRepository
interface and the other directly uses the MongoTemplate to issue a query.

CrudRepository.count() Used as Helper Method

public interface CrudRepository<T, ID> extends Repository<T, ID> {
long count();

EntityManager NamedQuery used as Helper Method
protected List<Book> books(int offset, int limit) {

return mongoTemplate.find(new Query().skip(offset).limit(1limit), Book.class);
}

27

We will need to inject some additional resources in order to make these calls:

* BooksRepository

* MongoTemplate

12.6. Naive Injections

Since we are not using sessions or transactions with Mongo, a simple/naive injection will work fine.
We do not have to worry about injecting a specific instance. However, we will run into a circular

dependency issue with the BooksRepository.
Naive Injections
public class BooksRepositoryCustomImpl implements BooksRepositoryCustom {

private final MongoTemplate mongoTemplate; @
private final BooksRepository booksRepository; @

@ any MongoTemplate instance referencing the correct database and collection is fine

@ eager/mandatory injection of self needs to be delayed

12.7. Required Injections

We need to instead

* use @Autowired @Lazy and a non-final attribute for the BooksRepository injection to indicate that
this instance can be initialized without access to the injected bean

Required Injections
import org.springframework.data.jpa.repository.MongoContext;

public class BooksRepositoryCustomImpl implements BooksRepositoryCustom {
private final MongoTemplate mongoTemplate;

@

private BooksRepository booksRepository;

@ BooksRepository lazily injected to mitigate the recursive dependency between the Impl class and

the full repository instance

12.8. Calling Custom Query

With all that in place, we can then call our custom random() method and obtain a sample Book to

work with from the database.

Example Custom Query Client Call

//when

28

Optional<Book> randomBook = booksRepository.random();
//then
then(randomBook.isPresent()).isTrue();

12.9. Implementing Aggregation

MongoTemplate has more power in it than what can be expressed with MongoRepository. As seen
with the random() implementation, we have the option of combining operations and dropping down
the to MongoTemplate for a portion of the implementation. That can also include use of the
Aggregation Pipeline, GridFS, Geolocation, etc.

The following custom implementation is declared in the Custom interface, extended by the
BooksRepository.

Custom Query Interface Definition
public interface BookRepositoryCustom {

List<Book> findByAuthorGESize(int length);

The snippet below shows the example leveraging the Aggregation Pipeline for its implementation
and returning a normal List<Book> collection.

Custom Query Implementation Based On Aggregation Pipeline

public List<Book> findByAuthorGESize(int length) {
String expression = String.format("A.{%d,}$", length);

Aggregation pipeline = Aggregation.newAggregation(
Aggregation.match(Criteria.where("author").regex(expression)),
Aggregation.match(Criteria.where("author").exists(true))

)i

AggregationResults<Book> result =
mongoTemplate.aggregate(pipeline, "books", Book.class);

return result.getMappedResults();

That allows us unlimited behavior in the data access layer and the ability to encapsulate the
capability into a single data access component.

29

Chapter 13. Summary

In this module, we learned:

that Spring Data MongoDB eliminates the need to write boilerplate MongoTemplate code

* to perform basic CRUD management for @Document classes using a repository

* to implement query-by-example

* that unbounded collections can grow over time and cause our applications to eventually fail
o that paging and sorting can easily be used with repositories

* to implement query methods derived from a query DSL

* to implement custom repository extensions

30

	Spring Data MongoDB Repository
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Spring Data MongoDB Repository
	Chapter 3. Spring Data MongoDB Repository Interfaces
	Chapter 4. BooksRepository
	4.1. Book @Document
	4.2. BooksRepository

	Chapter 5. Configuration
	5.1. Injection

	Chapter 6. CrudRepository
	6.1. CrudRepository save() New
	6.2. CrudRepository save() Update Existing
	6.3. CrudRepository save()/Update Resulting MongoDB Command
	6.4. CrudRepository existsById()
	6.5. CrudRepository findById()
	6.6. CrudRepository delete()
	6.7. CrudRepository deleteById()
	6.8. Other CrudRepository Methods

	Chapter 7. PagingAndSortingRepository
	7.1. Sorting
	7.2. Paging
	7.3. Page Result
	7.4. Slice Properties
	7.5. Page Properties
	7.6. Stateful Pageable Creation
	7.7. Page Iteration

	Chapter 8. Query By Example
	8.1. Example Object
	8.2. findAll By Example
	8.3. Ignoring Properties
	8.4. Contains ExampleMatcher

	Chapter 9. Derived Queries
	9.1. Single Field Exact Match Example
	9.2. Query Keywords
	9.3. Other Keywords
	9.4. Multiple Fields
	9.5. Collection Response Query Example
	9.6. Slice Response Query Example
	9.7. Page Response Query Example

	Chapter 10. @Query Annotation Queries
	10.1. @Query Annotation Attributes
	10.2. @Query Sort and Paging

	Chapter 11. MongoRepository Methods
	Chapter 12. Custom Queries
	12.1. Custom Query Interface
	12.2. Repository Extends Custom Query Interface
	12.3. Custom Query Method Implementation
	12.4. Repository Implementation Postfix
	12.5. Helper Methods
	12.6. Naive Injections
	12.7. Required Injections
	12.8. Calling Custom Query
	12.9. Implementing Aggregation

	Chapter 13. Summary

