Mongo Repository End-to-End
Application

jim stafford

Fall 2024 v2021-05-02: Built: 2024-11-19 21:37 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. BO/DTO Component Architecture
2.1. Business Object(s)/@Documents
2.2. Data Transfer Object(s) (DTOs)
2.3. BookDTO Class
2.4. BO/DTO Mapping
3. Service Architecture
3.1. Injected Service Boundaries
3.2. Compound Services
4. BO/DTO Interface Options
4.1. API Maps DTO/BO
4.2. @Service Maps DTO/BO
4.3. Layered Service Mapping Approach
5. Implementation Details
5.1. Book BO
5.2. BookDTO
5.3. Book JSON Rendering
5.4. Book XML Rendering
5.5. Pageable/PageableDTO
5.6. Page/PageDTO
6. BookMapper
6.1. Example Map: BookDTO to Book BO
6.2. Example Map: Book BO to BookDTO
7. Service Tier
7.1. BooksService Interface
7.2. BooksServiceImpl Class
7.3. createBook()
7.4. findBooksMatchingAll()
8. RestController API
8.1. createBook()
8.2. findBooksByExample()
8.3. WebClient Example

9. Summary

© 9 9 A W W NN R R R

DN DN DN DN DN DN DN DN DN DN DNDNDNMNDND PR R B B B B B B 2 =2
coO O O U1 U1 W W N DNDNDNN R R =R, 00 Ul Ul UTWWwWWN R, R

Chapter 1. Introduction

This lecture takes what you have learned in establishing a MongoDB data tier using Spring Data
MongoDB and shows that integrated into an end-to-end application with API CRUD calls and finder
calls using paging. It is assumed that you already know about API topics like Data Transfer Objects
(DTOs), JSON and XML content, marshalling/lunmarshalling using Jackson and JAXB, web
APIs/controllers, and clients. This lecture will put them all together.

Due to the common component technologies between the Spring Data JPA and
Spring Data MongoDB end-to-end solution, this lecture is about 95% the same as
the Spring Data JPA End-to-End Application lecture. Although it is presumed that
o the Spring Data JPA End-to-End Application lecture precedes this lecture —it was
written so that was not a requirement. If you have already mastered the Spring
Data JPA End-to-End Application topics, you should be able to quickly breeze
through this material because of the significant similarities in concepts and APIs.

1.1. Goals

The student will learn:

* to integrate a Spring Data MongoDB Repository into an end-to-end application, accessed
through an API

* to make a clear distinction between Data Transfer Objects (DTOs) and Business Objects (BOs)

to identify data type architectural decisions required for a multi-tiered application

* to understand the need for paging when working with potentially unbounded collections and
remote clients

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

implement a BO tier of classes that will be mapped to the database
implement a DTO tier of classes that will exchange state with external clients

implement a service tier that completes useful actions

= WMo

identify the controller/service layer interface decisions when it comes to using DTO and BO
classes

“u

implement a mapping tier between BO and DTO objects
6. implement paging requests through the API

7. implement page responses through the API

Chapter 2. BO/DTO Component Architecture

2.1. Business Object(s)/@Documents

For our Books application —I have kept the data model simple and kept it limited to a single
business object (BO) @Document class mapped to the database using Spring Data MongoDB
annotations and accessed through a Spring Data MongoDB repository.

The business objects are the focal point of

«B (0w
“@DBDEUT(E”T» information where we implement our business
00 .
@ «Repositorys decisions.
BooksRepository- —» intid
String title
v String author
N LocalDate published
A
K /
A /
* /
-
MongoDB

Figure 1. BO Class Mapped to DB as Spring Data
MongoDB @Document

The primary focus of our BO classes is to map business implementation concepts to the database.
There are two fundamental patterns of business objects:

* Anemic Domain Model - containing no validations, calculations, or implementation of business
rules. A basic data mapping with getters and setters.

* Rich Domain Model - combining data with business behavior indicative of an Object-Oriented
design. The rich domain model is at the heart of Domain Driven Design (DDD) architectural
concepts.

Due to our simplistic business domain, the example business object is very anemic. Do not treat
that as a desirable target for all cases.

The following snippet shows some of the optional mapping properties of a Spring Data MongoDB
@Document class.

BO Class Sample Spring Data MongoDB Mappings

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import org.springframework.data.mongodb.core.mapping.Field;

(collection = "books") @

public class Book {
@)

https://en.wikipedia.org/wiki/Anemic_domain_model
https://medium.com/@inzuael/anemic-domain-model-vs-rich-domain-model-78752b46098f

private String id;
(name="title") ®
private String title;
private String author;
private LocalDate published;

@ @Document.collection used to define the DB collection to use — otherwise uses name of class
@ @Id used to map the document primary key field to a class property

® @Field used to custom map a class property to a document field —the example is performing
what the default would have done

2.2. Data Transfer Object(s) (DTOs)

The Data Transfer Objects are the focal point of interfacing with external clients. They represent
state at a point in time. For external web APIs, they are commonly mapped to both JSON and XML.

For the API, we have the decision of whether to reuse BO classes as DTOs or implement a separate
set of classes for that purpose. Even though some applications start out simple, there will come a
point where database technology or mappings will need to change at a different pace than API
technology or mappings.

«DT0s» For that reason, I created a separate BooksDTO

BookDTO class to represent a sample DTO. It has a near

int i 1:1 mapping with the Book BO. This 1:1

String title representation of information makes it seem

string author like this is an unnecessary extra class, but it
LocalDate published s . .

demonstrates an initial technical separation

between the DTO and BO that allows for
independent changes down the road.

; \
Jf? mapped to I,I

] 1
| i

{json} 5 Ln‘ mapped to

Figure 2. DTO

The primary focus of our DTO classes is to map business interface concepts to a portable exchange
format.

2.3. BookDTO Class

The following snippet shows some of the annotations required to map the BookDTO class to XML
using Jackson and JAXB. Jackson JSON requires very few annotations in the simple cases.

DTO Class Sample J[SON/XML Mappings

import
import
import
import
import

public

com. fasterxml.jackson.dataformat.xml.annotation.JacksonXmlRootElement;
com. fasterxml.jackson.dataformat.xml.annotation.JacksonXmlProperty;
jakarta.xml.bind.annotation.XmlRootElement;
jakarta.xml.bind.annotation.XmlAccessType;
jakarta.xml.bind.annotation.XmlAccessorType;

(localName = "book", namespace = "urn:ejava.db-repo.books")
(name = "book", namespace = "urn:ejava.db-repo.books") @
(XmlAccessType.FIELD)

class BookDTO { @
(isAttribute = true)

private String id;
private String title;
private String author;

(LocalDatelaxbAdapter.class) @

private LocalDate published;

@ Jackson JSON requires very little to no annotations for simple mappings

@ XML mappings require more detailed definition to be complete

® JAXB requires a custom mapping definition for java.time types

2.4. BO/DTO Mapping

With separate BO and DTO classes, there is a mapp Eri
need for mapping between the two.
! Y
! A}
» map from DTO to BO for requests / \
R |
* map from BO to DTO for responses «B0» «DTO»
Book BookDTO

Figure 3. BO to DTO Mapping

We have several options on how to organize this role.

2.4.1. BO/DTO Self Mapping

* The BO or the DTO class can map to the DTO»
other «DTO» BookDTO
) .) BookDTO
o Benefit: good encapsulation of detail DTO toDTO(BO)
within the data classes themselves Y BO fromDTO(DTO)

. |
o Drawback: promotes coupling between | |

two layers we were trying to isolate : :
: |

Avoid unless users of DTO will «B0» —Y
a _) Book «B0»
O be tied to BO and are just Boolk
w
exchanging information. DTO toDTO(BO)
BO fromDTO(DTO)

Figure 4. BO to DTO Self Mapping

2.4.2. BO/DTO Method Self Mapping

* The API or service methods can map things

themselves within the body of the code @ e

- Benefit: mapping specialized to usecase method()
involved r ‘\
! \)
o Drawback: ; 3
N |
= mixed concerns within methods. «B 0w «OTO
))) Book BookDTO
= likely have repeated mapping code in
many methods
= Figure 5. BO to DTO Method Self Mapping
O Avoid.

2.4.3. BO/DTO Helper Method Mapping

* Delegate mapping to a reusable helper

method within the API or service classes @CnntrnllerﬁSewlce

o Benefit: code reuse within the API or B BO map(DTO)
B DTO map(BO)

service class e method1()
- Drawback: potential for repeated ® method2()
mapping in other classes ; Y
! %
7 This is a small but significant kr‘ :4
w step to a helper class L «DTO0»
Book BookDTO

Figure 6. BO/DTO Helper Method Mapping

2.4.4. BO/DTO Helper Class Mapping

» Create a separate interface/class to inject
into the API or service classes that

encapsulates the role of mapping ° memﬂgég ggo ma&ggg%
metho map

o Benefit: Reusable, testable, separation of ! '

©Contro|lerf5ervice ©BnnksMapper

Y

concern) '
¥ ~
o Drawback: none «B0» «DT0
Book BookDTO
Best in most cases unless good
r . .
Q reason for self-mapping 1is Figure 7. BO/DTO Helper Class Mapping
appropriate.

2.4.5. BO/DTO Helper Class Mapping Implementations
Mapping helper classes can be implemented by:

* brute force implementation
- Benefit: likely the fastest performance and technically simplest to understand
o Drawback: tedious setter/getter code
« off-the-shelf mapper libraries (e.g. Dozer, Orika, MapStruct, ModelMapper, JMapper) "
o Benefit:
= declarative language and inferred DIY mapping options

= some rely on code generation at compile time (similar in lifecycle to Lombok in some
ways) with the ability to override and customize

o Drawbacks:
= some rely on reflection for mapping which add to overhead

= non-trivial mappings can be complex to understand

MapStruct Thumbs Up

I have personally used Dozer in detail (years ago) and have recently been

introduced to MapStruct. I really like MapStruct much better. It writes much of the

same code you would have written in the brute force approach —without using
@ reflection at runtime. You can define a mapper through interfaces and abstract
classes —depending on how much you need to customize. You can also declare the
mapper as a component to have helper components injected for use in mapping.
In the end, you get a class with methods written in Java source that you can clearly
see. Everything is understandable.

[1] "Performance of Java Mapping Frameworks", Baeldung

[2] "any tool for java object to object mapping?", Stack Overflow

http://dozer.sourceforge.net/documentation/usage.html
https://orika-mapper.github.io/orika-docs/
https://mapstruct.org/
http://modelmapper.org/
https://jmapper-framework.github.io/jmapper-core/
https://www.baeldung.com/java-performance-mapping-frameworks
https://www.baeldung.com/java-performance-mapping-frameworks
https://stackoverflow.com/questions/1432764/any-tool-for-java-object-to-object-mapping

Chapter 3. Service Architecture

Services — with the aid of BOs —implement the meat of the business logic.

The service

implements an interface with business methods

is annotated with @Service component in most cases to

self-support auto-injection
injects repository component(s)

interacts with BO instances

Example Service Class Declaration

@RequiredArgsConstructor
@Service
public class BooksServiceImpl

implements BooksService {

private final BooksMapper mapper;
private final BooksRepository booksRepo;

3.1. Injected Service Boundaries

@ BooksSenvice

businessMethods()

«implementss»

@ «Services
BooksSemvicelmpl

«injected» BooksRepository booksRepo

businessMethods()

[

[

[
Y

«B0»

@ «@Documents
Boolk

int id

String title

String author
LocalDate published

Container features like @Secured, @Async, etc. are only implemented at component boundaries. When
a @Component dependency is injected, the container has the opportunity to add features using
"interpose”. As a part of interpose — the container implements proxy to add the desired feature of

the target component method.

@ ComponentA

@Autowired ComponentB b;

mli)

Figure 8. Container Interpose

Container Interpose

Feature

(€) components

m2();

@Feature

mz2(){}

Therefore it is important to arrange a component boundary wherever you need to start a new
characteristic provided by the container. The following is a more detailed explanation of what not
to do and do.

3.1.1. Buddy Method Boundary

The methods within a component class are not
typically subject to container interpose.
Therefore a call from m1(to m2() within the m1()

© Component

same component class is a straight Java call. @Secured("ROLE_ADMIN") m2(}

!
I

No Interpose for Buddy Method |

Calls I|

G
Q Buddy method calls are straight » class buddy method
Java calls without container il m;_{)
interpose. } - @Secured 1gnored

Figure 9. Buddy Method Boundary

3.1.2. Self Instantiated Method Boundary

Container interpose is only performed when the [self instantiated

container has a chance to decorate the called |m1() {

component. Therefore, a call to a method of a new ComponentB().m2();
)))) } - @sSecured 1gnored

component class that is self-instantiated will not .

have container interpose applied —no matter |

how the called method is annotated. ||

No Interpose for Self-Instantiated © ComponentA
Components
@ P ml()
- Self-instantiated classes are not

subject to container interpose. :
|
Y
(€) components

@Secured{"ROLE_ADMIN") m2()

Figure 10. Self Instantiated Method Boundary

3.1.3. Container Injected Method Boundary

Components m]t.ected. by the contalr}er are @ R
subject to contam'er' 1nterpF)se and will have @Autowired Component b;
declared characteristics applied. —
Container-Injected Components \
have Interpose \

declared features applied to b.m2();
called component methods. } - @Secured honored

‘f ’ . . e container injected
Use container injection to have I,f*f"""’v““ @Autowlired ComponentB b;
b) Interpose 3— ml() {

(€) components

@Secured("ROLE_ADMIN") m2()

Figure 11. Container Injected Method Boundary

3.2. Compound Services

With @Component boundaries and interpose constraints understood — in more complex security, or
threading solutions, the logical @Service many get broken up into one or more physical helper
@Component classes.

«RestControllers
BooksController

BooksAsyncHelper asyncHelper;

@Bookssemce <—& @Autowired
BooksService booksService;
mi)
«implements»
© wServices © «Components
BooksServicelmpl BooksAsyncHelper
@Autowired »—> @Autowired

BooksRepository booksRepo

businessMethods()

@Async businessMethodsAsync()

intid

String title

String author
LocalDate published

Figure 12. Single Service Expressed as Multiple

Components

10

Each helper @Component is primarily designed
around start and end of container
augmentation. The remaining parts of the
logical service are geared towards
implementing the outward facing facade, and
integrating the methods of the helper(s) to
complete the intended role of the service. An
example of this would be large loops of
behavior.

for (...) { asyncHelper.asyncMethod(); }

To external users of @Service —it is still logically,
just one @Service.

Conceptual Services may be
broken into Multiple Physical
Components

Conceptual boundaries for a
(r) service usually map 1:1 with a
- single physical class. However,
there are cases when the
conceptual service needs to be
implemented by multiple
physical classes/@Components.

Chapter 4. BO/DTO Interface Options

With the core roles of BOs and DTOs understood, we next have a decision to make about where to
use them within our application between the API and service classes.

«RestController | 010s or BOs? © oo S20ice * @RestController external interface will
BooksController = BooksSservicelmpl
> B always be based on DTOs.
" ! * Service’s internal implementation will
7 7
.' I. always be based on BOs.
I]
—Y * Where do we make the transition?
«OTO» (© Mapper «B0»
BookDTO Book

BO map(DTO dto)
DTO map(BO bo)

Figure 13. BO/DTO Interface Decisions

4.1. API Maps DTO/BO

It is natural to think of the @Service as working with pure implementation (BO) classes. This leaves
the mapping job to the @RestController and all clients of the @Service.

* Benefit: If we wire two @Services together,
they could efficiently share the same BO

«Services

«RestControllers f
BO
BooksController 5 ©BooksSeNlcelmpI

. . . Book m(Book book)

instances between them with no translation. v . i

rd ~ 4

s - !
* Drawback: @Services should be the . K
. - -\ %

boundary of a solution and encapsulate the e (©) Mapper =

. . . BookDTO Book
implementation details. ~ BOs leak o BO map(DTO dto) 2

DTO map(BO bo)

implementation details.
Figure 14. API Maps DTO to BO for Service Interface

4.2. @Service Maps DTO/BO

Alternatively, we can have the @Service fully encapsulate the implementation details and work with
DTOs in its interface. This places the job of DTO/BO translation to the @Service and the
@RestController and all @Service clients work with DTOs.

ETTE——— «Senvice» * Benefit: Service full encapsulates
B«Reserg "r’;’”‘Tlr” DTOs © Booksseg:\fiielmpl i 0 . y i p .
OOKSTONTOTeEr implementation and exchanges information
BookDTO m(BookDTO book) . i .
\ - < using DTOs designed for interfaces.
v P N
5 L7 N .
Y Phe N * Drawback: BOs go through a translation
E'l i < 3y
e (©) Mapper e when passing from @Service to @Service
BookDTO Book .
BO map(DTO dto) directly.
DTO map(BO bo)

Figure 15. Service Maps DTO in Service Interface to
BO

11

12

4.3. Layered Service Mapping Approach

The later DTO interface/mapping approach just introduced — maps closely to the Domain Driven

Design (DDD) "Application Layer". However, one could also implement a layering of services.

| logical service boundaryhl | physical implementation boundary B. e outer @Service classes
\ W represent the boundary
4
L | to the application and
«Service» «Components interface using DTOs
B“ggf(gcgg;’;gﬁl‘; DTO >©Bcokshpplicaticn BO BooksService .
DTO m(DTO dto) BO m1(BO bo) * inner eComponent classes
represent
BO implementation
v components and
@ Mapper @ «Components interface using native
BooksComponenta
BO map(DTO dto) BOs
DTO map(BO bo) BO m2(BO bo)
Layered Services Permit a Level of Trust between Inner Components
When using this approach, I like:
@,
- BOs in the Application tier

* all normalization and validation complete by the time DTOs are converted to
and normalized

* BOs exchanged between implementation components assume values are valid

https://ademcatamak.medium.com/layers-in-ddd-projects-bd492aa2b8aa
https://ademcatamak.medium.com/layers-in-ddd-projects-bd492aa2b8aa

Chapter 5. Implementation Details

With architectural decisions understood, lets take a look at some of the key details of the end-to-end
application.

5.1. Book BO

We have already covered the Book BO @Document class in a lot of detail during the MongoTemplate
lecture. The following lists most of the key business aspects and implementation details of the class.

Book BO Class with Spring Data MongoDB Database Mappings
package info.ejava.examples.db.mongo.books.bo;

(collection = "books")

public class Book {
(AccesslLevel.NONE)
private String id;

(name="title")
private String title;

private String author;

private LocalDate published;

5.2. BookDTO

The BookDTO class has been mapped to Jackson JSON and Jackson and JAXB XML. The details of
Jackson and JAXB mapping were covered in the API Content lectures. Jackson JSON required no
special annotations to map this class. Jackson and JAXB XML primarily needed some annotations
related to namespaces and attribute mapping. JAXB also required annotations for mapping the
LocalDate field.

The following lists the annotations required to marshal/unmarshal the BooksDTO class using
Jackson and JAXB.

BookDTO Class with JSON and XML Mappings

package info.ejava.examples.db.repo.jpa.books.dto;

13

(localName = "book", namespace = "urn:ejava.db-repo.books")
(name = "book", namespace = "urn:ejava.db-repo.books")
(XmlAccessType.FIELD)

public class BookDTO {
(isAttribute = true)

private int id;

private String title;

private String author;
(LocalDatelaxbAdapter.class) @

private LocalDate published;

@ JAXB requires an adapter for the newer LocalDate java class

5.2.1. LocalDateJaxbAdapter

Jackson is configured to marshal LocalDate out of the box using the ISO_LOCAL_DATE format for
both JSON and XML.

ISO_LOCAL_DATE format

"published" : "2013-01-30" //Jackson JSON
<published xmlns="">2013-01-30</published> //Jackson XML

JAXB does not have a default format and requires the class be mapped to/from a string using an
XmlAdapter.

LocalDateJaxbAdapter Class

(LocalDatelaxbAdapter.class) @
private LocalDate published;

public static class LocalDatelaxbAdapter extends XmlAdapter<String, LocalDate> {®@

public LocalDate unmarshal(String text) {
return null!=text ? LocalDate.parse(text, DateTimeFormatter.ISO_LOCAL_DATE) :
null;
}

public String marshal(LocalDate timestamp) {
return null!=timestamp ? DateTimeFormatter.ISO_LOCAL_DATE.format(timestamp) :
null;
}
}

14

@ JAXB requires an adapter to translate from LocalDate to/from XML

@ we can define an XmlAdapter to address LocalDate using java.time classes

5.3. Book JSON Rendering

The following snippet provides example JSON of a Book DTO payload.

Book JSON Rendering

{
"id":"609b316de7366e0451a7bcb0",

"title":"Tirra Lirra by the River",
"author":"Mr. Arlen Swift",
"published":"2020-07-26"

5.4. Book XML Rendering

The following snippets provide example XML of Book DTO payloads. They are technically equivalent
from an XML Schema standpoint, but use some alternate syntax XML to achieve the same technical

goals.

Book Jackson XML Rendering

<book xmlns="urn:ejava.db-repo.books" id="609b32b38065452555d612b8" >
<title xmlns="">To a God Unknown</title>
<author xmlns="">Rudolf Harris</author>
<published xmlns="">2019-11-22</published>

</book>

Book JAXB XML Rendering

<ns2:book xmlns:ns2="urn:ejava.db-repo.books" 1d="609b32b38065452555d61222">

<title>The Mermaids Singing</title>

<author>0len Rolfson IV</author>

<published>2020-10-14</published>
</ns2:book>

5.5. Pageable/PageableDTO

I placed a high value on paging when working with unbounded collections when covering
repository find methods. The value of paging comes especially into play when dealing with external
users. That means we will need a way to represent Page, Pageable, and Sort in requests and

responses as a part of DTO solution.

You will notice that I made a few decisions on how to implement this interface

15

1. I am assuming that both sides of the interface using the DTO classes are using Spring Data.

2. I am using the Page, Pageable, and Sort DTOs to directly self-map to/from Spring Data types. This
makes the client and service code much simpler.

Pageable pageable = PageableDT0.of(pageNumber, pageSize, sortString).toPageable();

@
Page<BookDTO> result = ...

BooksPageDTO resultDTO = new BooksPageDTO(result); @

@ using self-mapping between paging DTOs and Spring Data (Pageable and Page) types

3. I chose to use the Spring Data types in the @Service interface and performed the Spring Data to
DTO mapping in the @RestController. I did this so that I did not eliminate any pre-existing
library integration with Spring Data paging types.

Page<BookDT0> getBooks(Pageable pageable); @

@ using Spring Data (Pageable and Page) and business DTO (BookDT0) types in @Service interface

I will be going through the architecture and wiring in these lecture notes. The actual DTO code is
surprisingly complex to render in the different formats and libraries. These topics were covered in
detail in the API content lectures. I also chose to implement the PageableDTO and sort as
immutable — which added some interesting mapping challenges worth inspecting.

5.5.1. PageableDTO Request

Requests require an expression for Pageable. The most straight forward way to accomplish this is
through query parameters. The example snippet below shows pageNumber, pageSize, and sort
expressed as simple string values as part of the URI. We have to write code to express and parse
that data.

Example Pageable Query Parameters

O]
/api/books/example?pageNumber=0&pageSize=5&sort=published:DESC,id:ASC

@

@ pageNumber and pageSize are direct properties used by PageRequest

@ sort contains a comma separated list of order compressed into a single string

Integer pageNumber and pageSize are straight forward to represent as numeric values in the query.
Sort requires a minor amount of work. Spring Data Sort is an ordered list of property and direction.
I have chosen to express property and direction using a ":" separated string and concatenate the
ordering using a ",". This allows the query string to be expressed in the URI without special
characters.

16

5.5.2. PageableDTO Client-side Request Mapping

Since I expect code using the PageableDTO to also be using Spring Data, I chose to use self-mapping
between the PageableDT0 and Spring Data Pageable.

The following snippet shows how to map Pageable to PageableDT0 and the PageableDT0 properties to
URI query parameters.

Building URI with Pageable Request Parameters

PageRequest pageable = PageRequest.of(0, 5,
Sort.by(Sort.Order.desc("published"), Sort.Order.asc("id")));
Pageab1eDTO pageSpec = PageableDT0.of(pageable); @®
URIT uri=UriComponentsBuilder
.fromUri(serverConfig.getBaseUr1())
.path(BooksController.BOOKS_PATH).path("/example")
.queryParams(pageSpec.getQueryParams()) @
.build().toUri();

@ using Pageab1eDTO to self map from Pageable
@ using Pageab1eDT0 to self map to URI query parameters

5.5.3. PageableDTO Server-side Request Mapping

The following snippet shows how the individual page request properties can be used to build a
local instance of Pageab1eDT0 in the @RestController. Once the PageableDTO0 is built, we can use that to
self map to a Spring Data Pageable to be used when calling the @Service.

public ResponseEntity<BooksPageDTO> findBooksByExample(
(value="pageNumber",defaultValue="0",required=false) Integer
pageNumber,
(value="pageSize",required=false) Integer pageSize,
(value="sort",required=false) String sortString,
BookDTO probe) {

Pageable pageable = PageableDTO.of(pageNumber, pageSize, sortString) @
.toPageable(); @

® building Pageab1eDT0 from page request properties
@ using Pageab1eDT0 to self map to Spring Data Pageable

5.5.4. Pageable Response

Responses require an expression for Pageable to indicate the pageable properties about the content
returned. This must be expressed in the payload, so we need a JSON and XML expression for this.
The snippets below show the JSON and XML DTO renderings of our Pageable properties.

17

Example JSON Pageable Response Document

"pageable" : {

"pageNumber" : 1,

"pageSize" : 25,

"sort" : "title:ASC,author:ASC"
}

Example XML Pageable Response Document

<pageable xmlns="urn:ejava.common.dto" pageNumber="1" pageSize="25" sort=
"title:ASC,author:ASC"/>

5.6. Page/PageDTO

Pageable is part of the overall Page<T>, with contents. Therefore, we also need a way to return a page
of content to the caller.

5.6.1. PageDTO Rendering

JSON is very lenient and could have been implemented with a generic PageDTO<T> class.

{"content":[@
{"1d":"609cffbc881de53b82657f17", @
"title":"An Instant In The Wind",
"author":"Clifford Blick",
"published":"2003-04-09"}],
"totalElements":10, @
"pageable":{"pageNumber":3, "pageSize":3,"sort":null}} @

@ content, totalElements, and pageable are part of reusable PageDTO

@ book within content array is part of concrete Books domain

However, XML —with its use of unique namespaces, requires a sub-class to provide the type-
specific values for content and overall page.

<booksPage xmlns="urn:ejava.db-repo.books" totalElements="10"> ®
<wstxns1:content xmlns:wstxns1="urn:ejava.common.dto">
<book 1d="609cffbc881de53b82657f17"> @
<title xmlns="">An Instant In The Wind</title>
<author xmlns="">Clifford Blick</author>
<published xmlns="">2003-04-09</published>
</book>
</wstxnsl1:content>
<pageable xmlns="urn:ejava.common.dto" pageNumber="3" pageSize="3"/>
</booksPage>

18

@ totalElements mapped to XML as an (optional) attribute

@ booksPage and book are in concrete domain urn:ejava.db-repo.books namespace

5.6.2. BooksPageDTO Subclass Mapping

The BooksPageDT0 subclass provides the type-specific mapping for the content and overall page. The
generic portions are handled by the base class.

BooksPageDTO Subclass Mapping

(localName="booksPage", namespace="urn:ejava.db-repo.books")
(name="booksPage", namespace="urn:ejava.db-repo.books")
(name="BooksPage", namespace="urn:ejava.db-repo.books")
(XmLlAccessType.NONE)

public class BooksPageDTO extends PageDT0<BookDTO> {

(localName="content", namespace="urn:ejava.common.dto")
(localName="book", namespace="urn:ejava.db-repo.books")
(name="content", namespace="urn:ejava.common.dto")
(name="book", namespace="urn:ejava.db-repo.books")
public List<BookDTO> getContent() {
return super.getContent();

}
public BooksPageDTO(List<BookDTO> content, Long totalElements,

PageableDTO pageableDTO0) {
super(content, totalElements, pageableDTO0);

}
public BooksPageDTO(Page<BookDT0> page) {

this(page.getContent(), page.getTotalElements(),
PageableDT0.fromPageable(page.getPageable()));

5.6.3. PageDTO Server-side Rendering Response Mapping

The @RestController can use the concrete DTO class (BookPageDT0 in this case) to self-map from a
Spring Data Page<T> to a DTO suitable for marshaling back to the API client.

PageDTO Server-side Response Mapping
Page<BookDTO0> result=booksService.findBooksMatchingAll(probe, pageable);

BooksPageDTO resultDTO = new BooksPageDTO(result); @™
ResponseEntity<BooksPageDTO> response = ResponseEntity.ok(resultDT0);

@ using BooksPageDTO0 to self-map Sing Data Page<T> to DTO

19

5.6.4. PageDTO Client-side Rendering Response Mapping

The PageDTO<T> class can be used to self-map to a Spring Data Page<T>. Pageable, if needed, can be
obtained from the Page<T> or through the pageDT0.getPageable() DTO result.

PageDTO Client-side Response Mapping

//when

BooksPageDTO pageDTO = restTemplate.exchange(request, BooksPageDT0.class).getBody();
//then

Page<BookDT0> page = pageDTO0.toPage(); @
then(page.getSize()).isEqualTo(pageableRequest.getPageSize());
then(page.getNumber()).isEqualTo(pageableRequest.getPageNumber());
then(page.getSort()).isEqualTo(Sort.by(Sort.Direction.DESC, "published"));

Pageable pageable = pageDT0.getPageableDTO().toPageable(); @

@ using PageDTO<T> to self-map to a Spring Data Page<T>
@ can use page.getPageable() or pageDTO0.getPageable().toPageable() obtain Pageable

20

Chapter 6. BookMapper

The BookMapper @Component class is used to map between BookDTO and Book BO instances. It leverages
Lombok builder methods — but is pretty much a simple/brute force mapping.

6.1. Example Map: BookDTO to Book BO

The following snippet is an example of mapping a BookDTO to a Book BO.

Map BookDTO to Book BO

public class BooksMapper {
public Book map(BookDTO dto) {
Book bo = null;
if (dto!=null) {
bo = Book.builder()

.id(dto.getId())
.author(dto.getAuthor())
.title(dto.qgetTitle())
.published(dto.getPublished())
.build();

}

return bo;

6.2. Example Map: Book BO to BookDTO

The following snippet is an example of mapping a Book BO to a BookDTO.

Map Book BO to BookDTO

public BookDTO map(Book bo) {
BookDTO dto = null;
if (bo!=null) {
dto = BookDTO.builder()

.id(bo.getId())
.author(bo.getAuthor())
.title(bo.qgetTitle())
.published(bo.getPublished())
.build();

}

return dto;

21

Chapter 7. Service Tier

The BooksService @Service encapsulates the implementation of our management of Books.

7.1. BooksService Interface

The BooksService interface defines a portion of pure CRUD methods and a series of finder methods.
To be consistent with DDD encapsulation, the @Service interface is using DTO classes. Since the
@Service is an injectable component, I chose to use straight Spring Data pageable types to possibly
integrate with libraries that inherently work with Spring Data types.

BooksService Interface

public interface BooksService {
BookDTO createBook(BookDTO bookDT0); @
BookDTO getBook(int id);
void updateBook(int id, BookDTO bookDTO);

void deleteBook(int 1id);
void deleteAl1Books();

Page<BookDT0> findPublishedAfter(LocalDate exclusive, Pageable pageable);®@
Page<BookDTO0> findBooksMatchingA11(BookDTO probe, Pageable pageable);

@ chose to use DTOs in @Service interface

@ chose to use Spring Data types in pageable @Service finder methods

7.2. BooksServiceImpl Class

The BooksServiceImpl implementation class is implemented using the BooksRepository and

BooksMapper.

BooksServiceImpl Implementation Attributes

® @

public class BooksServiceImpl implements BooksService {
private final BooksMapper mapper;
private final BooksRepository booksRepo;

@ Creates a constructor for all final attributes
@ Single constructors are automatically used for Autowiring

I will demonstrate two methods here — one that creates a book and one that finds books. There is
no need for any type of formal transaction here because we are representing the boundary of
consistency within a single document.

22

MongoDB 4.x Does Support Multi-document Transactions

Multi-document transactions are now supported within MongoDB (as of version

4x) and Spring Data MongoDB. When using declared transactions with Spring
(;) Data MongoDB, this looks identical to transactions implemented with Spring Data
JPA. The programmatic interface is fairly intuitive as well. However, it is not
considered a best, early practice. Therefore, I will defer that topic to a more
advanced coverage of MongoDB interactions.

7.3. createBook()
The createBook() method

» accepts a BookDTO, creates a new book, and returns the created book as a BookDTO, with the
generated ID.

* calls the mapper to map from/to a BooksDTO to/from a Book BO

 uses the BooksRepository to interact with the database

BooksServiceImpl.createBook()

public BookDTO createBook(BookDTO bookDTO) {
Book bookBO = mapper.map(bookDT0); @

//insert instance
booksRepo.save(bookB0); @

return mapper.map(bookB0); ®

@ mapper converting DTO input argument to BO instance
@ BO instance saved to database and updated with primary key

® mapper converting BO entity to DTO instance for return from service

7.4. findBooksMatchingAll()
The findBooksMatchingA11l() method

 accepts a BookDT0 as a probe and Pageable to adjust the search and results
* calls the mapper to map from/to a BooksDTO to/from a Book BO

 uses the BooksRepository to interact with the database

BooksServiceImpl Finder Method

public Page<BookDTO> findBooksMatchingAl1(BookDTO probeDTO, Pageable pageable) {
Book probe = mapper.map(probeDT0); @®
ExampleMatcher matcher = ExampleMatcher.matchingAll(); @
Page<Book> books = booksRepo.findA11(Example.of(probe, matcher), pageable); ®

23

https://docs.mongodb.com/manual/core/transactions/
https://www.baeldung.com/spring-data-mongodb-transactions
https://spring.io/blog/2018/06/28/hands-on-mongodb-4-0-transactions-with-spring-data

return mapper.map(books); @

@ mapper converting DTO input argument to BO instance to create probe for match
@ building matching rules to AND all supplied non-null properties
@ finder method invoked with matching and paging arguments to return page of BOs

@ mapper converting page of BOs to page of DTOs

24

Chapter 8. RestController API

The @RestController provides an HTTP Facade for our @Service.

@RestController Class

public class BooksController {
public static final String BOOKS_PATH="api/books";
public static final String BOOK_PATH= BOOKS_PATH + "/{id}";
public static final String RANDOM_BOOK_PATH= BOOKS_PATH + "/random";

private final BooksService booksService; @

@ @Service injected into class using constructor injection

I will demonstrate two of the operations available.

8.1. createBook()

The createBook() operation

* is called using POST /api/books method and URI
» passed a BookDTO, containing the fields to use marshaled in JSON or XML
* calls the @Service to handle the details of creating the Book

* returns the created book using a BookDTO

createBook() API Operation

(path=BOOKS_PATH,
method=RequestMethod.POST,
consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
public ResponseEntity<BookDTO> createBook(BookDTO bookDTO) {

BookDTO result = booksService.createBook(bookDT0); @

URI uri = ServletUriComponentsBuilder.fromCurrentRequestUri()
.replacePath(BOOK_PATH)
.build(result.getId()); @

ResponseEntity<BookDT0> response = ResponseEntity.created(uri).body(result);
return response; ®

® DTO from HTTP Request supplied to and result DTO returned from @Service method

25

@ URI of created instance calculated for Location response header

® DTO marshalled back to caller with HTTP Response

8.2. findBooksByExample()

The findBooksByExample() operation

* is called using "POST /api/books/example” method and URI

» passed a BookDTO containing the properties to search for using JSON or XML

calls the @Service to handle the details of finding the books after mapping the Pageable from
query parameters

converts the Page<BookDT0> into a BooksPageDTO to address marshaling concerns relative to XML.

* returns the page as a BooksPageDTO

findBooksByExample API Operation

(path=BOOKS_PATH + "/example",
method=RequestMethod.POST,
consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},
produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})
public ResponseEntity<BooksPageDT0> findBooksByExample(
(value="pageNumber", defaultValue="0",required=false) Integer
pageNumber,
(value="pageSize",required=false) Integer pageSize,
(value="sort",required=false) String sortString,
BookDTO probe) {

Pageable pageable=PageableDTO0.of(pageNumber, pageSize, sortString).toPageable();®
Page<BookDTO0> result=booksService.findBooksMatchingAll(probe, pageable); @

BooksPageDTO resultDTO = new BooksPageDTO(result); ®
ResponseEntity<BooksPageDTO> response = ResponseEntity.ok(resultDT0);
return response;

@ Pageab1eDT0 constructed from page request query parameters

@ @Service accepts DTO arguments for call and returns DTO constructs mixed with Spring Data
paging types
® type-specific BooksPageDTO marshalled back to caller to support type-specific XML namespaces

8.3. WebClient Example

The following snippet shows an example of using a WebClient to request a page of finder results
form the API. WebClient is part of the Spring WebFlux libraries—which implements reactive
streams. The use of WebClient here is purely for example and not a requirement of anything
created. However, using WebClient did force my hand to add JAXB to the DTO mappings since

26

Jackson XML is not yet supported by WebFlux. RestTemplate does support both Jackson and JAXB
XML mapping - which would have made mapping simpler.

WebClient Client

private WebClient webClient;

UriComponentsBuilder findByExampleUriBuilder = UriComponentsBuilder

//given

.fromUri(serverConfig.getBaseUr1())
.path(BooksController.BOOKS_PATH).path("/example");

MediaType mediaType = ...

PageRequest pageable
PageableDTO pageSpec

PageRequest.of(0, 5, Sort.by(Sort.Order.desc("published")));
PageableDTO0.of(pageable); @

BookDTO allBooksProbe = BookDTO.builder().build(); @

URT uri

= findByExampleUriBuilder.queryParams(pageSpec.getQueryParams()) @

.build().toUri();

WebClient.RequestHeadersSpec<?> request = webClient.post()

//when

.uri(uri)

.contentType(mediaType)

.body(Mono. just(allBooksProbe), BookDTO.class)
.accept(mediaType);

ResponseEntity<BooksPageDTO> response = request

//then

.retrieve()
.toEntity(BooksPageDT0.class).block();

then(response.getStatusCode().is2xxSuccessful()).isTrue();
BooksPageDTO page = response.getBody();

@ limiting query rsults to first page, ordered by "release", with a page size of 5

@ create a "match everything" probe

® pageable properties added as query parameters

@,

WebClient/WebFlex does not yet support Jackson XML

WebClient and WebFlex does not yet support Jackson XML. This is what primarily
forced the example to leverage JAXB for XML. WebClient/WebFlux automatically
makes the decision/transition under the covers once an @XmlRootElement is
provided.

27

Chapter 9. Summary

In this module, we learned:
* to integrate a Spring Data MongoDB Repository into an end-to-end application, accessed
through an API
* implement a service tier that completes useful actions
» to make a clear distinction between DTOs and BOs
* to identify data type architectural decisions required for DTO and BO types
* to setup proper container feature boundaries using annotations and injection
» implement paging requests through the API

* implement page responses through the API

28

	Mongo Repository End-to-End Application
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. BO/DTO Component Architecture
	2.1. Business Object(s)/@Documents
	2.2. Data Transfer Object(s) (DTOs)
	2.3. BookDTO Class
	2.4. BO/DTO Mapping

	Chapter 3. Service Architecture
	3.1. Injected Service Boundaries
	3.2. Compound Services

	Chapter 4. BO/DTO Interface Options
	4.1. API Maps DTO/BO
	4.2. @Service Maps DTO/BO
	4.3. Layered Service Mapping Approach

	Chapter 5. Implementation Details
	5.1. Book BO
	5.2. BookDTO
	5.3. Book JSON Rendering
	5.4. Book XML Rendering
	5.5. Pageable/PageableDTO
	5.6. Page/PageDTO

	Chapter 6. BookMapper
	6.1. Example Map: BookDTO to Book BO
	6.2. Example Map: Book BO to BookDTO

	Chapter 7. Service Tier
	7.1. BooksService Interface
	7.2. BooksServiceImpl Class
	7.3. createBook()
	7.4. findBooksMatchingAll()

	Chapter 8. RestController API
	8.1. createBook()
	8.2. findBooksByExample()
	8.3. WebClient Example

	Chapter 9. Summary

