JWT/JWS Token Authn/Authz

jim stafford

Fall 2024 v2020-07-15: Built: 2024-11-19 21:36 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Identity and Authorities
2.1. BASIC Authentication/Authorization
3. Tokens
3.1. Token Authentication/Login
3.2. Token Authorization/Operation
3.3. Authentication Separate from Authorization
3.4. JWT Terms
4. JWT Authentication
4.1. Example JWT Authentication/Login Flow
4.2. Example JWT Authorization/Operation Call Flow
5. Maven Dependencies
6. JwtConfig
6.1. JwtConfig application.properties
7. JwtUtil
7.1. Dependencies on JwtUtil
7.2. JwtUtil: generateToken()
7.3. JwtUtil: generateToken() Helper Methods
7.4. Example Encoded JWS
7.5. Example Decoded JWS Header and Body
7.6. JwtUtil: parseToken()
7.7. JwtUtil: parseToken() Helper Methods
8. JwtAuthenticationFilter
8.1. JwtAuthenticationFilter Relationships
8.2. JwtAuthenticationFilter: Constructor
8.3. JwtAuthenticationFilter: attemptAuthentication()
8.4. JwtAuthenticationFilter: attemptAuthentication() DTO
8.5. JwtAuthenticationFilter: attemptAuthentication() Helper Method
8.6. JwtAuthenticationFilter: successfulAuthentication()
9. JwtAuthorizationFilter
9.1. JwtAuthorizationFilter Relationships
9.2. JwtAuthorizationFilter: Constructor
9.3. JwtAuthorizationFilter: doFilterInternal()
9.4. JwtAuthenticationToken
9.5. JwtEntryPoint
10. API Security Configuration

0 00 00 O O U B R NN R

NN NN NN DN N DN N R R R R R s s s s s
T o R W W NN RO O O O 00 00U Ul R R W W R RO

10.1. API Authentication Manager Builder

10.2. API HttpSecurity Key JWS Parts

10.3. API HttpSecurity Full Details
11. Example JWT/JWS Application

11.1. Roles and Role Inheritance

11.2. CartsService

11.3. Login

11.4. createCart()

11.5. addItem()

11.6. getCart()

11.7. removeCart()

12. Summary

27
28
28
30
30
30
31
32
33
34
35
37

Chapter 1. Introduction

In previous lectures we have covered many aspects of the Spring/Spring Boot authentication and
authorization frameworks and have mostly demonstrated that with HTTP Basic Authentication. In
this lecture we are going to use what we learned about the framework to implement a different
authentication strategy — JSON Web Token (JWT) and JSON Web Signature (JWS).

The focus on this lecture will be a brief introduction to JSON Web Tokens (JWT) and how they could
be implemented in the Spring/Spring Boot Security Framework. The real meat of this lecture is to
provide a concrete example of how to leverage and extend the provided framework.

1.1. Goals

You will learn:

what is a JSON Web Token (JWT) and JSON Web Secret (JWS)
* what problems does JWT/JWS solve with API authentication and authorization

* how to write and integrate custom authentication and authorization framework classes to
implement an alternate security mechanism

* how to leverage Spring Expression Language to evaluate parameters and properties of the
SecurityContext

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1. construct and sign a JWT with claims representing an authenticated user

2. verify a JWS signature and parse the body to obtain claims to re-instantiate an authenticated
user details

3. identify the similarities and differences in flows between HTTP Basic and JWS
authentication/authorization flows

4. build a custom JWS authentication filter to extract login information, authenticate the user,
build a JWS bearer token, and populate the HTTP response header with its value

5. build a custom JWS authorization filter to extract the JWS bearer token from the HTTP request,
verify its authenticity, and establish the authenticated identity for the current security context

6. implement custom error reporting with authentication and authorization

Chapter 2. Identity and Authorities

Some key points of security are to identify the caller and determine authorities they have.

* When using BASIC authentication, we presented credentials each time. This was all in one shot,
every time on the way to the operation being invoked.

* When using FORM authentication, we presented credentials (using a FORM) up front to
establish a session and then referenced that session on subsequent calls.

The benefit to BASIC is that is stateless and can work with multiple servers — whether clustered or
peer services. The bad part about BASIC is that we must present the credentials each time and the
services must have access to our user details (including passwords) to be able to do anything with
them.

The benefit to FORM is that we present credentials one time and then reference the work of that
authentication through a session ID. The bad part of FORM is that the session is on the server and
harder to share with members of a cluster and impossible to share with peer services.

What we intend to do with token-based authentication is to mimic the one-time login of FORM and
stateless aspects of BASIC. To do that —we must give the client at login, information they can pass
to the services hosting operations that can securely identify them (at a minimum) and potentially
identify the authorities they have without having that stored on the server hosting the operation.

2.1. BASIC Authentication/Authorization

To better understand the token flow, I would like to start by reviewing the BASIC Auth flow.

FilterChainProxy

Reguest HTTP Header

Authorization: BASIC username:password

7) call: next filter
with SC populated

s
s
&
#
#
4

1) call: doFilter() .
s

#
#
-

-

BasicAuthenticationFilter

A

&) call: set

2) extracts credentials

> SecurityContextHolder

El
|
|

3) call: authenticate B‘

]
[
;5) return: success

s
-

e
~ ‘authRequest
p

-
d

I
I
I
]
1

«Authentications»
UsernamePasswordAuthenticationToken

I
AuthenticationManager

4) builds

username
password

authRequest

«AuthenticationProviders
AuthenticationProvider

0.1

«Authentication»
UsernamePasswordAuthenticationToken

username
authorities

authResult

1. the BasicAuthenticationFilter ("the filter") is called in its place within the FilterChainProxy

2. the filter extracts the username/password credentials from the Authorization header and stages
them in a UsernamePasswordAuthenticationToken ("the authRequest")

3. the filter passes the authRequest to the AuthenticationManager to authenticate

4. the AuthenticationManager, thru its assigned AuthenticationProvider, successfully authenticates

the request and builds an authResult
successful response with the authResult hosting the wuser

5. the filter receives the

details —including username and granted authorities

6. the filter stores the authRes

ult in the SecurityContext

7. the filter invokes the next filter in the chain — which will eventually call the target operation

All this — authentication and user details management — must occur within the same server as the

operation for BASIC Auth.

Chapter 3. Tokens

With token authentication, we are going to break the flow into two parts: authentication/login and

authorization/operation.

3.1. Token Authentication/Login

The following is a conceptual depiction of the authentication flow. It differs from the BASIC
Authentication flow in that nothing is stored in the SecurityContext during the login/authentication.

Everything needed to authorize the follow-on operation call is encoded into a Bearer Token and
returned to the caller in an Authorization header. Things encoded in the bearer token are referred

to as "claims".

POST
FilterChainProxy Response HTTP Header uri : "Japiflogin®
Authorization: Bearer o claims oo username
T password
: =
] s
1 . -
| #
&
. 7) return to caller P)
1) call: doFilter() . 2) extracts credentials
with Authz header P
&
s
s
e
P
rd
TokenAuthenticationFilter | 6) builds | Token
claims
o) T
1]
I 1
I 1
i \
3) call: authenticate I}‘I 15) return: success Irepresents
I 1
e ' 1
Z h ! \
 ~ authRequest | \
. - I 1
s ! v
«Authentication» I «Authentications
UsernamePasswordAuthenticationTolken AuthenticationManager 4) builds UsernamePasswordAuthenticationTolen
username Y 1 "~~~/ " username
password autharities

«AuthenticationProviders
AuthenticationProvider

authRequest authResult

Figure 1. Example Notional Token Authentication/Login

Step 2 extracts the username/password from a POST payload —very similar to FORM Auth.
However, we could have just as easily implemented the same extract technique used by BASIC

Auth.

Step 7 returns the the token representation of the authResult back to the caller that just successfully
authenticated. They will present that information later when they invoke an operation in this or a
different server. There is no requirement for the token returned to be used locally. The token can be
used on any server that trusts tokens created by this server. The biggest requirement is that we
must trust the token is built by something of trust and be able to verify that it never gets modified.

3.2. Token Authorization/Operation

To invoke the intended operation, the caller must include an Authorization header with the bearer
token returned to them from the login. This will carry their identity (at a minimum) and authorities

encoded in the bearer token’s claims section.

Request HTTP Header
Authorization: Bearer xx: claims o

.ﬂ

s
£
!
d
&

7) call: next filter - P
with SC populated 1) call: doFilter() o7 2) extract token

FilterChainProxy

s

-
#
-
-
-

TokenAuthorizationFilter

6) call: set > SecurityContextHolder

A
[
|
I
2 1
3) call authenticate B. /5) return: success
I
s
& I
s I
, ‘authRequest 1
I | 0.1
£ I : z
«duthentication= I) «authenncarmng]
AuthenticationToken AuthenticationManager | 4) builds | UsernamePasswordAuthenticationToken
token : header:claims:signature usernarme
authorities

authRequest

«AuthenticationProviders
TokenAuthenticationProvider

authResult

Figure 2. Example Notational Token Authorization/Operation

1. the Token AuthorizationFilter ("the filter") is called by the FilterChainProxy

2. the filter extracts the bearer token from the Authorization header and wraps that in an

authRequest
3. the filter passes the authRequest to the AuthenticationManager to authenticate

4. the AuthenticationManager with its Token AuthenticationProvider are able to verify the contents
of the token and re-build the necessary portions of the authResult

5. the authResult is returned to the filter

6. the filter stores the authResult in the SecurityContext
7. the filter invokes the next filter in the chain — which will eventually call the target operation

Bearer Token has Already Been Authenticated
Since the filter knows this is a bearer token, it could have bypassed the call to the
AuthenticationManager. However, by doing so —it makes the responsibilities of the

classes consistent with their original purpose and also gives the

AuthenticationProvider the option to obtain more user details for the caller.

3.3. Authentication Separate from Authorization

Notice the overall client to operation call was broken into two independent workflows. This enables
the client to present their credentials a limited amount of times and for the operations to be spread
out through the network. The primary requirement to allow this to occur is TRUST.

We need the ability for the authResult to be represented in a token, carried around by the caller,
and presented later to the operations with the trust that it was not modified.

JSON Web Tokens (JWT) are a way to express the user details within the body of a token. JSON Web
Signature (JWS) is a way to assure that the original token has not been modified. JSON Web
Encryption (JWE) is a way to assure the original token stays private. This lecture and example will
focus in JWS — but it is common to refer to the overall topic as JWT.

3.4. JWT Terms

The following table contains some key, introductory terms related to JWT.

JSON Web Token
JWT)

JSON Web
Signature (JWS)

JSON Web
Encryption (JWE)

JSON Web
Algorithms (JWA)

JSON Object
Signing and
Encryption (JOSE)
Header

JWS Payload
JWS Signature
Unsecured JWS

a compact JSON claims representation that makes up the payload of a JWS or
JWE structure e.g., {"sub":"user1", "auth":["ROLE_ADMIN"]}. The JSON
document is referred to as the JWT Claim Set.

Basically — this is where we place what we want to represent. In our case, we
will be representing the authenticated principal and their assigned
authorities.

represents content secured with a digital signature (signed with a private key
and verifiable using a sharable public key) or Message Authentication Codes
(MACs) (signed and verifiable using a shared, symmetric key) using JSON-
based data structures

represents encrypted content using JSON-based data structures

a registry of required, recommended, and optional algorithms and identifiers
to be used with JWS and JWE

JSON document containing cryptographic operations/parameters used. e.g.,
{Iltypll : IIJWTH , lla'lgll : "HW256"}

the message to be secured — an arbitrary sequence of octets

digital signature or MAC over the header and payload

n,.n

JWS without a signature ("alg":"none")

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518

JWS Compact
Serialization

JWS JSON
Serialization

a representation of the JWS as a compact, URL-safe String meant for use in
query parameters and HTTP headers

base64({"typ":"IWT","alg": "HW256"})

.base64({"sub":"user1", "auth":["ROLE_ADMIN"]1})

.baseb4(signature(JOSE + Payload))

a JSON representation where individual fields may be signed using one or
more keys. There is no emphasis for compact for this use but it makes use of
many of the underlying constructs of JWS.

Chapter 4. JWT Authentication

With the general workflows understood and a few concepts of JWT/JWS introduced, I want to

update the diagrams slightly with real classnames from the examples and walk through how we
can add JWT authentication to Spring/Spring Boot.

4.1. Example JWT Authentication/Login Flow

POST
FilterChainProxy Response HTTP Header uri : "/apiflogin®
Authorization: Bearer header:claims:signature username
password
-
r
e
Ed
’
. 7) return to caller < .
1) call: doFilter() . < 2) extracts credentials
with Authz header L
7
P
s
-
rd
L JWs
JwtAuthenticationFilter | 8) builds _» header
claims
A signature
1
I ‘l
I]
] 1
1 1
3) call: authenticate I}‘I I5) return: success \represents
I 1
I i
1]
I \
I]
«Authentication»] Y
UsernamePasswordAuthenticationToken e 4) builds AT
AuthenticationManager | #)bulds » UsernamePasswordAuthenticationToken
username
password

«AuthenticationProviders

authRequest AuthenticationProvider

authResult

4.2. Example JWT Authorization/Operation Call Flow

FilterChainProxy

Request HTTP Header

Authorization: Bearer header: claims:signature
A

with SC populated

7) call: next fitter Ill 1) call; doFilter{)
o’

<
&
£
#
&

.7 2) extract token

&
rd
e
-~
-

rd
6) call: set > SecurityContextHolder

JwtAuthorizationFilter

3] call authenticate B’.

L)

I
;5] return: success

|
I 0.1
«Authentication» | e
. «Authentications
P icat 4) build o
JwtAuthenticationToken AuthenticationManager | 4)] M8 5 UsernamePasswordAuthenticationToken
token : header:claims:signature
«AuthenticationProviders
authResult

JwtAuthenticationProvider

authRequest

Lets take a look at the implementation to be able to fully understand both JWT/JWS and leveraging

the Spring/Spring Boot Security Framework.

Chapter 5. Maven Dependencies

Spring does not provide its own standalone JWT/JWS library or contain a direct reference to any. I
happen to be using the jjwt library from jsonwebtoken.

JWT/JWS Maven Dependencies

<dependency>
<groupIld>io.jsonwebtoken</groupId>
<artifactId>jjwt-api</artifactId>

</dependency>

<dependency>
<groupId>io.jsonwebtoken</groupId>
<artifactId>jjwt-impl</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>io.jsonwebtoken</groupId>
<artifactId>jjwt-jackson</artifactId>
<scope>runtime</scope>

</dependency>

10

https://java.jsonwebtoken.io/

Chapter 6. JwtConfig

At the bottom of the details of our JWT/JWS authentication and authorization example is a
@ConfigurationProperties class to represent the configuration.

Example JwtConfig @ConfigurationProperties Class

(prefix = "jwt")

public class JwtConfig {

private String loginUri; @

private String key; @

private String authoritiesKey = "auth"; ®
private String headerPrefix = "Bearer "; @
private int expirationSecs=60*60*24; ®

public String getKey() {
if (key==null) {
key=UUID.randomUUID().toString();
log.info("generated JWT signing key={}", key);
}

return key;

}
public SecretKey getSigningKey() {
return Keys.hmacShaKeyFor(getKey().getBytes(Charset.forName("UTF-8")));

}
public SecretKey getVerifyKey() {
return getSigningKey();

}

® login-uri defines the URI for the JWT authentication
@ key defines a value to build a symmetric SecretKey
® authorities-key is the JSON key for the user’s assigned authorities within the JWT body

@ header-prefix defines the prefix in the Authorization header. This will likely never change, but it
is good to define it in a single, common place

® expiration-secs is the number of seconds from generation for when the token will expire. Set
this to a low value to test expiration and large value to limit login requirements

6.1. JwtConfig application.properties
The following shows an example set of properties defined for the @ConfigurationProperties class.

Example property value
O]

11

jwt.key=123456789012345678901234567890123456789012345678901234567890
jwt.expiration-secs=300000000
jwt.login-uri=/api/login

@ the key must remain protected —but for symmetric keys must be shared between signer and
verifiers

12

Chapter 7. JwtUtil

This class contains all the algorithms that are core to implementing token authentication using
JWT/JWS. It is configured by value in JwtConfig.

Example JwtUtil Utility Class

@RequiredArgsConstructor
public class JwtUtil {
private final JwtConfig jwtConfig;

7.1. Dependencies on JwtUtil

The following diagram shows the dependencies on JwtUtil and also on JwtConfig.
* JwtAuthenticationFilter needs to process requests to the loginUri, generate a JWS token for
successfully authenticated users, and set that JWS token on the HTTP response

* JwtAuthorizationFilter processes all messages in the chain and gets the JWS token from the
Authorization header.

* JwtAuthenticationProvider parses the String token into an Authentication result.

JwtUtil handles the meat of that work relative to JWS. The other classes deal with plugging that
work into places in the security flow.

@meuthenticatiDnFilter ©meuthorizatiﬂnFilter
© successfulAuthentication() < doFilterinternal(}
/ ~ ;
/ . |
fgetLoginUri() ~ .generateToken(), setToken() getToken()
. B v
(© Jwtconfig (©) pwtuti
loginUri
key generateToken(authResult : Authentication) : String
authoritieskey = "auth" parseToken(token : String) : Authentication
headerPrefix = "Bearer " setToken(response : HtpSenvletResponse, token : String) @ void
expirationSecs getToken(reguest : HitpServietRequest) : String
K
[
[
parseToken()

© JwtAuthenticationProvider

2 supportsiauthentication ; JwtAuthenticationToken) : boolean
@ authenticate(authentication : JwtAuthenticationToken) : Authentication

Figure 3. Dependencies on JwtUtil

13

7.2. JwtUtil: generateToken()

The following code snippet shows creating a JWS builder that will end up signing the header and
payload. Individual setters are called for well-known claims. A generic claim(key, value) is used to
add the authorities.

JwtUtil generateToken() for Authenticated User
import io.jsonwebtoken.Jwts;

public String generateToken(Authentication authenticated) {

String token = Jwts.builder()
.setSubject(authenticated.getName()) @
.setIssuedAt(new Date())
.setExpiration(getExpires()) @
.claim(jwtConfig.getAuthoritiesKey(), getAuthorities(authenticated))
.signWith(jwtConfig.qgetSigningKey())
.compact();

return token;

@ JWT has some well-known claim values

@ claim(key,value) used to set custom claim values

7.3. JwtUtil: generateToken() Helper Methods

The following helper methods are used in setting the claim values of the JWT.

JwtUtil generateToken() Helper Methods

protected Date getExpires() { @

Instant expiresInstant = LocalDateTime.now()
.plus(jwtConfig.getExpirationSecs(), ChronoUnit.SECONDS)
.atZone(ZoneOffset.systemDefault())

.toInstant();
return Date.from(expiresInstant);
}
protected List<String> getAuthorities(Authentication authenticated) {
return authenticated.getAuthorities().stream() @
.map(a->a.getAuthority())
.collect(Collectors.tolList());

@ calculates an instant in the future — relative to local time — the token will expire

@ strip authorities down to String authorities to make marshalled value less verbose

The following helper method in the JwtConfig class generates a SecretKey suitable for signing the
JWS.

14

JwtConfig getSigningKey() Helper Method

import io.jsonwebtoken.security.Keys;
import javax.crypto.SecretKey;

public class JwtConfig {
public SecretKey getSigningKey() {
return Keys.hmacShaKeyFor (getKey() @®
.getBytes(Charset.forName("UTF-8")));

@ the hmacSha algorithm and the 40 character key will generate a H5384 SecretKey for signing

7.4. Example Encoded JWS

The following is an example of what the token value will look like. There are three base64 values
separated by a period "." each. The first represents the header, the second the body, and the third

the cryptographic signature of the header and body.
Example Encoded JWS

eyJ0eXAi01JKV1QiLCIhbGci01JIUZITN119.eyJzdWIi0iImemFzaWVyIiwiaWF@IjoxNTk@ODk1Nzk3LCI1e
HA10jE10TQ40Tk1MTcsImF1dGhvem1@aWVzIjpbITBSSUNFXONIRUNLI iwiUk9MRVIDVVNUT@1FU1IdLCIqdGk
101I5NjQ3MzET0S@3MTNjLTRIN2EtYmE4Z10zYWMwMz1mODhjZGQifQ.ED-j7md02bwNdZdI4I2Hm_88j -

aSeYkrbdlEacmjotU
0]

@ base64(JWS Header).base64(JWS body).base64(sign(header + body))
There is no set limit to the size of HTTP headers. However, it has been pointed out

that Apache defaults to an 8KB limit and IIS is 16KB. The default size for Tomcat is
4KB. In case you were counting, the above string is 272 characters long.

7.5. Example Decoded JWS Header and Body

15

https://stackoverflow.com/questions/686217/maximum-on-http-header-values
https://stackoverflow.com/questions/686217/maximum-on-http-header-values
https://tomcat.apache.org/tomcat-5.5-doc/config/http.html#:~:text=The%20maximum%20size%20of%20the,to%204096%20(4%20KB)
https://tomcat.apache.org/tomcat-5.5-doc/config/http.html#:~:text=The%20maximum%20size%20of%20the,to%204096%20(4%20KB)

Example Decoded JWS Header and Body The following is what is produced if we base64
decode the first two sections. We can use sites

{ like jsonwebtoken.io and jwt.io to inspect JWS
"typ": "JWT", tokens. The header identifies the type and
"alg": "HS384" signing algorithm. The body carries the claims.

1 Some claims (e.g., subject/sub) are well known

and standardized. All standard claims are
shortened to try to make the token as condensed
as possible.

"sub": "frasier",

"jat": 1594895797,

"exp": 1894899397,

"auth": [
"PRICE_CHECK",
"ROLE_CUSTOMER"

]

}

7.6. JwtUtil: parseToken()

The parseToken() method verifies the contents of the JWS has not been modified, and re-assembles
an authenticated Authentication object to be returned by the AuthenticationProvider and
AuthenticationManager and placed into the SecurityContext for when the operation is executed.

Example JwtUtil parseToken()

import io.jsonwebtoken.Claims;
import io.jsonwebtoken.JwtException;
import io.jsonwebtoken.Jwts;

public Authentication parseToken(String token) throws JwtException {
Claims body = Jwts.parserBuilder()
.setSigningKey(jwtConfig.getVerifyKey()) @
.build()
.parseClaimsJws(token)
.getBody();
User user = new User(body.getSubject(), "", getGrantedAuthorities(body));
Authentication authentication=new UsernamePasswordAuthenticationToken(
user, token, @
user.getAuthorities());
return authentication;

@ verification and signing keys are the same for symmetric algorithms

@ there is no real use for the token in the authResult. It was placed in the password position in the
event we wanted to locate it.

16

https://www.jsonwebtoken.io/#jws-create-key
https://jwt.io/#debugger-io

7.7. JwtUtil: parseToken() Helper Methods

The following helper method extracts the authority strings stored in the (parsed) token and wraps
them in GrantedAuthority objects to be used by the authorization framework.

JwtUtil parseToken() Helper Methods

protected List<GrantedAuthority> getGrantedAuthorities(Claims claims) {
List<String> authorities = (List) claims.get(jwtConfig.qgetAuthoritiesKey());
return authorities==null ? Collections.emptyList() :
authorities.stream()
.map(a->new SimpleGrantedAuthority(a)) @
.collect(Collectors.tolList());

® converting authority strings from token into GrantedAuthority objects used by Spring security
framework

The following helper method returns the verify key to be the same as the signing key.

Example JwtConfig parseToken() Helper Methods

public class JwtConfig {
public SecretKey getSigningKey() {
return Keys.hmacShaKeyFor(getKey().getBytes(Charset.forName("UTF-8")));
}
public SecretKey getVerifyKey() {
return getSigningKey();

}

17

Chapter 8. JwtAuthenticationFilter

The JwtAuthenticationFilter is the target filter for generating new bearer tokens. It accepts POSTS
to a configured /api/login URI with the username and password, authenticates those credentials,
generates a bearer token with JWS, and returns that value in the Authorization header. The
following is an example of making the end-to-end authentication call. Notice the bearer token
returned. We will need this value in follow-on calls.

Example End-to-End Authentication Call

$ curl -v -X POST http://localhost:8080/api/login -d '{"username":"frasier",
"password": "password"}'

> POST /api/login HTTP/1.1

< HTTP/1.1 200

< Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iImemFzaWVyIiwiaWFOIjoxNTk@OTgwMTAyLCI1eHA10jE40TQ50DM3M
DIsImF1dGgi01siUFJJIQOVfQOhFQOsiLCISTAOXFXONVUTRPTUVSIT19.u2MmzTxaDoVNFGGCnrAcWBusS_NS2N
ndZXkaT964hLgcDTvCYAW_sXtTxRw8g_13

The JwtAuthenticationFilter delegates much of the detail work handling the header and JWS token
to the JwtUtil class shown earlier.

JwtAuthenticationFilter

public class JwtAuthenticationFilter extends UsernamePasswordAuthenticationFilter {
private final JwtUtil jwtUtil;

8.1. JwtAuthenticationFilter Relationships

The JwtAuthenticationFilter fills out the abstract workflow of the
AbstractAuthenticationProcessingFilter by implementing two primary methods:
attemptAuthentication() and successfulAuthentication().

18

©«Logm Reguest:
LoginDTO

username
password

extracts

© AbstractAuthenticationProcessingFilter

@ doFilter(request, response, chain)
© gttemptAuthentication(request, response) : Authentication

?

© JwtAuthenticationFilter

o jwtut

sets token

o attemptAuthentication(request, response) : Authentication
© successfulauthentication(request, response, chain, authResult)

© HTTF Response Headers

Authorization: Bearer (token)

-

, “builds authRequest
-
~

e
«Authentications»
UsernamePasswordAuthenticationToken

username
password

pi S
™~ . processes
~

-

-~

authenticates with

-

~
~ .. makes token from authResult
-

S

«Authentications
UsernamePasswordAuthenticationToken

username
authorities

-7 |

- ||

-
’/’creates |
-

~ /,’ |

~

@ AuthenticationManager
authResult

authRequest

authenticate(authReguest : Authentication) : Authentication

Figure 4. JwtAuthenticationFilter Relationships

The attemptAuthenticate() callback is used to perform all the steps necessary to authenticate the
caller. Unsuccessful attempts are returned the the caller immediately with a 401/Unauthorized
status.

The successfulAuthentication() callback is used to generate the JWS token from the authResult and
return that in the response header. The call is returned immediately to the caller with a 200/0K
status and an Authorization header containing the constructed token.

8.2. JwtAuthenticationFilter: Constructor

The filter constructor sets up the object to only listen to POSTs against the configured loginUri. The
base class we are extending holds onto the AuthenticationManager used during the
attemptAuthentication() callback.

JwtAuthenticationFilter Constructor

public JwtAuthenticationFilter(JwtConfig jwtConfig, AuthenticationManager authm) {
super (new AntPathRequestMatcher (jwtConfig.getLoginUri(), "POST"));
this.jwtUtil = new JwtUtil(jwtConfig);
setAuthenticationManager (authm);

8.3. JwtAuthenticationFilter: attemptAuthentication()
The attemptAuthentication() method has two core jobs: obtain credentials and authenticate.

* The credentials could have been obtained in a number of different ways. I have simply chosen
to create a DTO class with username and password to carry that information.

19

* The credentials are stored in an Authentication object that acts as the authRequest. The
authResult from the AuthenticationManager is returned from the callback.

Any failure (getCredentials() or authenticate()) will result in an AuthenticationException thrown.

JwtAuthenticationFilter attemptAuthentication()

public Authentication attemptAuthentication(
HttpServletRequest request, HttpServletResponse response)
throws AuthenticationException { @

LoginDTO login = getCredentials(request);
UsernamePasswordAuthenticationToken authRequest =
new UsernamePasswordAuthenticationToken(login.getUsername(), login.
getPassword());

Authentication authResult = getAuthenticationManager().authenticate(authRequest);
return authResult;

@ any failure to obtain a successful Authentication result will throw an AuthenticationException

8.4. JwtAuthenticationFilter: attemptAuthentication()
DTO

The LoginDTO is a simple POJO class that will get marshalled as JSON and placed in the body of the
POST.

JwtAuthenticationFilter attemptAuthentication() DTO
package info.ejava.examples.svc.auth.cart.security.jwt;

import lombok.Getter;
import lombok.Setter;

public class LoginDTO {
private String username;
private String password;

8.5. JwtAuthenticationFilter: attemptAuthentication()
Helper Method

We can use the Jackson Mapper to easily unmarshal the POST payload into DTO form any rethrown
any failed parsing as a Bad(CredentialsException. Unfortunately for debugging, the default

20

401/Unauthorized response to the caller does not provide details we supply here but I guess that is
a good thing when dealing with credentials and login attempts.

JwtAuthenticationFilter attemptAuthentication() Helper Method

import com.fasterxml.jackson.databind.ObjectMapper;

protected LoginDTO getCredentials(HttpServletRequest request) throws
AuthenticationException {

try {
return new ObjectMapper().readValue(request.getInputStream(), LoginDTO.class);

} catch (IOException ex) {
log.info("error parsing loginDT0", ex);
throw new BadCredentialsException(ex.getMessage()); @

@ BadCredentialsException extends AuthenticationException

8.6. JwtAuthenticationFilter:
successfulAuthentication()

The successfulAuthentication() is called when authentication was successful. It has two primary
jobs: encode the authenticated result in a JWS token and set the value in the response header.

JwtAuthenticationFilter successfulAuthentication()

protected void successfulAuthentication(
HttpServletRequest request, HttpServletResponse response, FilterChain chain,
Authentication authResult) throws IOException, ServletException {

String token = jwtUtil.generateToken(authResult); @
log.info("generated token={}", token);
jwtUtil.setToken(response, token); @

@ authResult represented within the claims of the JWS
@ caller given the JWS token in the response header
This callback fully overrides the parent method to eliminate setting the SecurityContext and issuing

a redirect. Neither have relevance in this situation. The authenticated caller will not require a
SecurityContext now —this is the login. The SecurityContext will be set as part of the call to the

operation.

21

Chapter 9. JwtAuthorizationFilter

The JwtAuthorizationFilter is responsible for realizing any provided JWS bearer tokens as an
authResult within the current SecurityContext on the way to invoking an operation. The following
end-to-end operation call shows the caller supplying the bearer token in order to identity
themselves to the server implementing the operation. The example operation uses the username of
the current SecurityContext as a key to locate information for the caller.

Example Operation Call with JWS Bearer Token

$ curl -v -X POST http://localhost:8080/api/carts/items?name=thing \

-H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eyJzdWIi0iImemFzaWVyIiwiaWF@IjoxNTk@OTgwMTAyLCI1eHA103jE40TQ50DM3M
DIsImF1dGgi0OlsiUFJIQOVFQOhFQOsiLCISTOXFXONVUTRPTUVSIT19.u2MmzTxaDoVNFGGCnrAcWBusS_NS2N
ndZXkaT964hLgcDTvCYAW_sXtTxRw8g_13"

> POST /api/carts/items?name=thing HTTP/1.1

< HTTP/1.1 200
{"username":"frasier","items":["thing"]} @ @

@ username is encoded within the JWS token
@ cart with items is found by username

The JwtAuthorizationFilter did not seem to match any of the Spring-provided authentication
filters —so I directly extended a generic filter support class that assures it will only get called once
per request.

This class also relies on JwtUtil to implement the details of working with the JWS bearer token

JwtAuthorizationFilter
public class JwtAuthorizationFilter extends OncePerRequestFilter {
private final JwtUtil jwtUtil;

private final AuthenticationManager authenticationManager;
private final AuthenticationEntryPoint failureResponse = new JwtEntryPoint();

9.1. JwtAuthorizationFilter Relationships

The JwtAuthorizationFilter extends the generic framework of OncePerRequestFilter and performs
all of its work in the doFilterInternal() callback.

22

@ «Fifters
I Request HTTP Header OncePerRequestFiter

I@Abstra ctAuthenticationToken
I

authRequest P - "
I - ‘Authurlzatmn: Bearer header:claims signature o doFliterlrequest, response, chain) : void
~ © doFilterinternal(request, response, chain) : void
\
1l
f’ \

)/ \obtains token
(?‘7 Ay

/ N

@ «Authentications . © JwtAuthorizationFilter
JwtAuthenticationToken builds request - - sets authResult @ SecurltyContextHolder
= —— T -~~~ O failureResponse : JwtEntyPoint -~ ~- - 7"~~~
token : header:claims:signature = = = |
© doFilterinternal(request. response, chain) : void
*
VA
i '
y \ requests authorization
/ \
/ \
/ "

@ AuthenticationManager
carries raw token string A~ wpr stores | authResult
.

authenticate(authRequest : Authentication) : Authentication

/
© «AuthenticationProviders «Authentications»
JwtAuthenticationProvider builds from jws token _| UsernamePasswordAuthenticationToken
verifies JWS token 5,——— ************ >
supports{authRequest : Authentication) : boolean uster:nagwe
authenticate(authRequest : Authentication) : Authentication BLIoNES

The JwtAuthenticationFilter obtains the raw JWS token from the request header, wraps the token
in the JwsAuthenticationToken authRequest and requests authentication from the
AuthenticationManager. Placing this behavior in an AuthenticationProvider was optional but seemed
to be consistent with the framework. It also provided the opportunity to lookup further user details
if ever required.

Supporting the AuthenticationManager is the JwtAuthenticationProvider, which verifies the JWS
token and re-builds the authResult from the JWS token claims.

The filter finishes by setting the authResult in the SecurityContext prior to advancing the chain
further towards the operation call.

9.2. JwtAuthorizationFilter: Constructor

The JwtAuthorizationFilter relies on the JwtUtil helper class to implement the meat of the JWS
token details. It also accepts an AuthenticationManager that is assumed to be populated with the
JwtAuthenticationProvider.

JwtAuthorizationFilter Constructor

public JwtAuthorizationFilter(JwtConfig jwtConfig, AuthenticationManager
authenticationManager) {

jwtUtil = new JwtUtil(jwtConfig);

this.authenticationManager = authenticationManager;

9.3. JwtAuthorizationFilter: doFilterInternal()

Like most filters the JwtAuthorizationFilter initially determines if there is anything to do. If there is
no Authorization header with a "Bearer " token, the filter is quietly bypassed and the filter chain is
advanced.

If a token is found, we request authentication —where the JWS token is verified and converted

23

back into an Authentication object to store in the SecurityContext as the authResult.

Any failure to complete authentication when the token is present in the header will result in the
chain terminating and an error status returned to the caller.

JwtAuthorizationFilter doFilterInternal()

protected void doFilterInternal(HttpServletRequest request, HttpServletResponse
response, FilterChain filterChain)
throws ServletException, IOException {

String token = jwtUtil.getToken(request);

if (token == null) { //continue on without IWS authn/authz
filterChain.doFilter(request, response); M
return;

try {
Authentication authentication = new JwtAuthenticationToken(token); @
Authentication authenticated = authenticationManager.authenticate
(authentication);
SecurityContextHolder.getContext().setAuthentication(authenticated); ®
filterChain.doFilter(request, response); //continue chain to operation @
} catch (AuthenticationException fail) {
failureResponse.commence(request, response, fail); ®
return; //end the chain and return error to caller

@ chain is quietly advanced forward if there is no token found in the request header
@ simple authRequest wrapper for the token

® store the authenticated user in the SecurityContext

@ continue the chain with the authenticated user now present in the SecurityContext

® issue an error response if token is present but we are unable to complete authentication

9.4. JwtAuthenticationToken

The JwtAuthenticationToken has a simple job—carry the raw JWS token string through the
authentication process and be able to provide it to the JwtAuthenticationProvider. I am not sure
whether I gained much by extending the AbstractAuthenticationToken. The primary requirement
was to implement the Authentication interface. As you can see, the implementation simply carries
the value and returns it for just about every question asked. It will be the job of
JwtAuthenticationProvider to turn that token into an Authentication instance that represents the
authResult, carrying authorities and other properties that have more exposed details.

24

JwtAuthenticationToken Class

public class JwtAuthenticationToken extends AbstractAuthenticationToken {

private final String token;

public JwtAuthenticationToken(String token) {
super(Collections.emptyList());
this.token = token;

}

public String getToken() {
return token;

}

public Object getCredentials() {
return token;

}

public Object getPrincipal() {
return token;

}

The JwtAuthenticationProvider class implements two key methods: supports() and authenticate()

JwtAuthenticationProvider Class

public class JwtAuthenticationProvider implements AuthenticationProvider {
private final JwtUtil jwtUtil;
public JwtAuthenticationProvider(JwtConfig jwtConfig) {
jwtUtil = new JwtUtil(jwtConfig);
}

public boolean supports(Class<?> authentication) {
return JwtAuthenticationToken.class.isAssignableFrom(authentication);

}

public Authentication authenticate(Authentication authentication)

throws AuthenticationException {

try {
String token = ((JwtAuthenticationToken)authentication).getToken();
Authentication authResult = jwtUtil.parseToken(token);
return authResult;

} catch (JwtException ex) {
throw new BadCredentialsException(ex.getMessage());

}

The supports() method returns true only if the token type is the JwtAuthenticationToken type.

The authenticate() method obtains the raw token value, confirms its validity, and builds an

25

Authentication authResult from its claims. The vresult is simply returned to the
AuthenticationManager and the calling filter.

Any error in authenticate() will result in an AuthenticationException. The most likely is an expired
token —but could also be the result of a munged token string.

9.5. JwtEntryPoint

The JwtEntryPoint class implements an AuthenticationEntryPoint interface that is used elsewhere in
the framework for cases when an error handler is needed because of an AuthenticationException.
We are using it within the JwtAuthorizationProvider to report an error with authentication —but
you will also see it show up elsewhere.

JwtEntryPoint
package info.ejava.examples.svc.auth.cart.security.jwt;

import org.springframework.http.HttpStatus;
import org.springframework.security.core.AuthenticationException;
import org.springframework.security.web.AuthenticationEntryPoint;

public class JwtEntryPoint implements AuthenticationEntryPoint {

public void commence(HttpServletRequest request, HttpServletResponse response,
AuthenticationException authException) throws IOException {
response.sendError (HttpStatus.UNAUTHORIZED.value(), authException.getMessage(
));
}

26

Chapter 10. API Security Configuration

With all the supporting framework classes in place, I will now show how we can wire this up. This,
of course, takes us back to the WebSecurityConfigurer class.

* We inject required beans into the configuration class. The only thing that is new is the JwtConfig
@ConfigurationProperties class. The UserDetailsService provides users/passwords and
authorities from a database

» configure(HttpSecurity) is where we setup our FilterChainProxy

» configure(AuthenticationManagerBuilder) is where we setup our AuthenticationManager used by
our filters in the FilterChainProxy.

API Security Configuration

(0)

(JwtConfig.class) @
public class APIConfiguration extends WebSecurityConfigurerAdapter {
private final JwtConfig jwtConfig; @
private final UserDetailsService jdbcUserDetailsService; @

protected void configure(HttpSecurity http) throws Exception {
// details here ...

}

protected void configure(AuthenticationManagerBuilder auth) throws Exception {
//details here ...

}

@ enabling the JwtConfig as a @ConfigurationProperties bean
@ injecting the JwtConfig bean into out configuration class

® injecting a source of user details (i.e., username/password and authorities)

10.1. API Authentication Manager Builder

The configure(AuthenticationManagerBuilder) configures the builder with two
AuthenticationProviders

* one containing real users/passwords and authorities

» a second with the ability to instantiate an Authentication from a JWS token

API Authentication Manager Builder

protected void configure(AuthenticationManagerBuilder auth) throws Exception {

27

auth.userDetailsService(jdbcUserDetailsService); @
auth.authenticationProvider(new JwtAuthenticationProvider(jwtConfig));

@ configuring an AuthenticationManager with both the UserDetailsService and our new
JwtAuthenticationProvider

The UserDetailsService was injected because it required setup elsewhere. However, the
JwtAuthenticationProvider is stateless — getting everything it needs from a startup configuration
and the authentication calls.

10.2. API HttpSecurity Key JWS Parts

The following snippet shows the key parts to wire in the JWS handling.

» we register the JwtAuthenticationFilter to handle authentication of logins

» we register the JwtAuthorizationFilter to handle restoring the SecurityContext when the caller
presents a valid JWS bearer token

* not required — but we register a custom error handler that leaks some details about why the
caller is being rejected when receiving a 403/Forbidden

protected void configure(HttpSecurity http) throws Exception {
//. ..
http.addFilterAt(new JwtAuthenticationFilter(jwtConfig, @
authenticationManager()),
UsernamePasswordAuthenticationFilter.class);
http.addFilterAfter(new JwtAuthorizationFilter(jwtConfig, @
authenticationManager()),
JwtAuthenticationFilter.class);
http.exceptionHandling(cfg->cfg.defaultAuthenticationEntryPointFor(&®
new JwtEntryPoint(),
new AntPathRequestMatcher("/api/**")));

http.authorizeRequests(cfg->cfg.antMatchers("/api/login").permitAl1());
http.authorizeRequests(cfg->cfg.antMatchers("/api/carts/**").authenticated());

® JwtAuthenticationFilter being registered at location normally used for
UsernamePasswordAuthenticationFilter

@ JwtAuthorizationFilter being registered after the authn filter

® adding an optional error reporter

10.3. API HttpSecurity Full Details

The following shows the full contents of the configure(HttpSecurity) method. In this view you can
see how FORM and BASIC Auth have been disabled and we are operating in a stateless mode with

28

various header/CORS options enabled.

API HttpSecurity Full Details

protected void configure(HttpSecurity http) throws Exception {

http.
http.
http.
http.
cfg.xssProtection().disable();
cfg.frameOptions().disable();

;i

http.
http.
http.

.sessionCreationPolicy(SessionCreationPolicy.STATELESS));

http.

http.

http.

http.
http.
http.

requestMatchers(m->m.antMatchers("/api/**"));
httpBasic(cfg->cfg.disable());
formLogin(cfg->cfg.disable());

headers(cfg->{

csrf(cfg->cfg.disable());
cors();
sessionManagement(cfg->cfg

addFilterAt(new JwtAuthenticationFilter(jwtConfig,
authenticationManager()),
UsernamePasswordAuthenticationFilter.class);
addFilterAfter(new JwtAuthorizationFilter(jwtConfig,
authenticationManager()),
JwtAuthenticationFilter.class);
exceptionHandling(cfg->cfg.defaultAuthenticationEntryPointFor (
new JwtEntryPoint(),
new AntPathRequestMatcher("/api/**")));

authorizeRequests(cfg->cfg.antMatchers("/api/login").permitAl1l());
authorizeRequests(cfg->cfg.antMatchers("/api/whoami").permitAll());
authorizeRequests(cfg->cfg.antMatchers("/api/carts/**").authenticated());

29

Chapter 11. Example JWT/JWS Application

Now that we have thoroughly covered the addition of the JWT/JWS to the security framework of
our application, it is time to look at the application and with a focus on authorizations. I have added
a few unique aspects since the previous lecture’s example use of @PreAuthorize.

* we are using JWT/JWS — of course

* access annotations are applied to the service interface versus controller class

* access annotations inspect the values of the input parameters

11.1. Roles and Role Inheritance

I have reused the same users, passwords, and role assignments from the authorities example and
will demonstrate with the following users.

e ROLE_ADMIN - sam

* ROLE_CLERK - woody

e ROLE CUSTOMER - norm and frasier

However, role inheritance is only defined for ROLE_ADMIN inheriting all accesses from
ROLE_CLERK. None of the roles inherit from ROLE_CUSTOMER.

Role Inheritance

public RoleHierarchy roleHierarchy() {
RoleHierarchyImpl roleHierarchy = new RoleHierarchyImpl();
roleHierarchy.setHierarchy(StringUtils.join(Arrays.asList(
"ROLE_ADMIN > ROLE_CLERK"),System.lineSeparator()));
return roleHierarchy;

11.2. CartsService

We have a simple CartsService with a Web API and service implementation. The code below shows
the interface to the service. It has been annotated with @PreAuthorize expressions that use the
Spring Expression Language to evaluate the principal from the SecurityContext and parameters of
the call.

CartsService
package info.ejava.examples.svc.auth.cart.services;

import info.ejava.examples.svc.auth.cart.dto.CartDTO;
import org.springframework.security.access.prepost.PreAuthorize;

30

public interface CartsService {

("#username == authentication.name and hasRole('CUSTOMER')") @
CartDTO createCart(String username);

("#username == authentication.name or hasRole('CLERK')") @
CartDTO getCart(String username);

("#username == authentication.name") ®
CartDTO addItem(String username, String item);

("#username == authentication.name or hasRole('ADMIN')") @
boolean removeCart(String username);

@ anyone with the CUSTOMER role can create a cart but it must be for their username
@ anyone can get their own cart and anyone with the CLERK role can get anyone’s cart
® users can only add item to their own cart

@ users can remove their own cart and anyone with the ADMIN role can remove anyone’s cart

11.3. Login

The following shows creation of tokens for four example users

Sam

$ curl -v -X POST http://localhost:8080/api/login -d '{"username":"sam",

"password": "password"}' @

> POST /api/login HTTP/1.1

< HTTP/1.1 200

< Authorization: Bearer

eyJhbGeci0iJIUzMANCI9.eylzdWIi0iJzYWOiLCIpYXQiOjETOTUWMT cwNDQsImV4cCIO6MTg5NTAYMDY@NCwiY
XV0aCI6WyJSTOxFXOFETU10I119.1CzAn1r2UyrpGJQSYk9uqxMAAQ9QC1Dw7GKedNiGvCyTasMfWSStrqxVeU
it-cb4

M sam has role ADMIN and inherits role CLERK

Woody

$ curl -v -X POST http://localhost:8080/api/login -d '{"username":"woody",
"password":"password"}' @

> POST /api/login HTTP/1.1

< HTTP/1.1 200

< Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0i13b29keSIsImIhdCI6GMTUSNTAXNZATMSwiZXhwIjoxODk TMDIwN;jUxL
CJhdXRoIjpbI1IPTEVfQOxFUksiXX0.kreSFPgTIr2heGMLcjHFrglydvhPZKR7Iy4F6b76WNIvAkbZVhfymbQ
xekuPL-A1

31

@ woody has role CLERK

Norm and Frasier

$ curl -v -X POST http://localhost:8080/api/login -d '{"username":"norm",
"password":"password"}' @

> POST /api/login HTTP/1.1

< HTTP/1.1 200

< Authorization: Bearer
eyJhbGci01JIUzMANCI9.eylzdWIi0iJub3JtIiwiaWF@IjoxNTk1MDE3MDY1LCI1eHAT0jE40TUWMjAZNjUST
mF1dGgi01siUk9MRVIDVVNUTO1FUi1dfQ.UX4yPDu@LzWdEAObbI1i10tZ7ePUTRSIH_o_hayPrimNxhjU5DL6X
Q42iRCLLuFgw

$ curl -v -X POST http://localhost:8080/api/login -d '{"username":"frasier",
"password":"password"}' @

> POST /api/login HTTP/1.1

< HTTP/1.1 200

< Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iImemFzaWVyIiwiaWF@IjoxNTk1MDE3MDexLCI1eHAT0jE40TUWMjA2N
zEsImF1dGgi01siUFJJQOVfQOhFQOsiLCISTAOXFXONVUTRPTUVSIT19.ELAeSfoIL_u2QyhpjwDoqQbL4H11Ik
uir9CIPdOT80w2115216QY6ZaKv883txI

@ norm and frasier have role CUSTOMER

11.4. createCart()

The access rules for createCart() require the caller be a customer and be creating a cart for their
username.

createCart() Access Rules

("#username == authentication.name and hasRole('CUSTOMER')") @
CartDTO createCart(String username); @

@ #username refers to the username method parameter
Woody is unable to create a cart because he lacks the CUSTOMER role.

Woody Unable to Create Cart

$ curl -X GET http://localhost:8080/api/whoAmI -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iI3b29keSIsImlhdCI6GMTUSNTAXNZATMSwiZXhwIjoxODk TMDIwN;jUxL
CJIhdXRoIjpbI1IPTEVfQOxFUksiXX0.kreSFPgTIr2heGMLcjHFrglydvhPZKR7Iy4F6b76WNIvAkbZVhfymbQ
xekuPL-Ai" #woody

[woody, [ROLE_CLERK]]

$ curl -X POST http://localhost:8080/api/carts -H "Authorization: Bearer
eyJhbGci0iJIUzM4ANCI9.eyJzdWIi0113b29keSIsImIhdCI6GMTUSNTAXNZATMSwiZXhwIjoxODk TMDIwN;jUxL
CJhdXRoIjpbI1IPTEVFQOxFUksiXX@.kreSFPgTIr2heGMLcjHFrglydvhPZKR7Iy4F6b76WNIvAkbZVhfymbQ
xekuPL-Ai" #woody

32

{"ur1":"http://1localhost:8080/api/carts", "message":"Forbidden","description":"caller[w
oody] is forbidden from making this request","timestamp":"2020-07-
17720:24:14.1595077"}

Norm is able to create a cart because he has the CUSTOMER role.

Norm Can Create Cart

$ curl -X GET http://localhost:8080/api/whoAmI -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iJub3JtIiwiaWF@IjoxNTkTMDE3MDY1LCI1eHAT0jE40TUWMjAZNjUST
mF1dGgi01siUk9MRVIDVVNUTO1FUi1dfQ.UX4yPDu@LzWdEAObbI1i10tZ7ePUTRSIH_o_hayPr1mNxhjU5DL6X
Q42iRCLLuFgw" #norm

[norm, [ROLE_CUSTOMER]]

$ curl -X POST http://localhost:8080/api/carts -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iJub3JtIiwiaWF@IjoxNTkTMDE3MDY1LCI1eHAT0jE40TUWMjA2NjUST
mF1dGgi01siUk9MRVIDVVNUTO1FUi1dfQ.UX4yPDu@LzWAEAObbI110tZ7ePUTRSIH_o_hayPrimNxhjU5DL6X
Q42iRCLLuFgw" #norm

{"username":"norm","items":[]}

11.5. addItem()

The addItem() access rules only allow users to add items to their own cart.

addItem() Access Rules

("#username == authentication.name")
CartDTO addItem(String username, String item);

Frasier is forbidden from adding items to Norm’s cart because his identity does not match the
username for the cart.

Frasier Cannot Add to Norms Cart

$ curl -X GET http://localhost:8080/api/whoAmI -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iImemFzaWVyIiwiaWFOIjoxNTkTMDE3MDexLCI1eHA10jE40TUWMjA2N
zEsImF1dGgi01siUFJJQOVfQOhFQOsiLCISTAOXFXONVUTRPTUVSIT19.ELAeSfoIL_u2QyhpjwDoqQbL4H11Ik
uir9CIPd0OT80w21I5216QY6ZaKvW883txI" #frasier

[frasier, [PRICE_CHECK, ROLE_CUSTOMER]]

$ curl -X POST "http://localhost:8080/api/carts/items?username=norm&name=chardonnay"
-H "Authorization: Bearer
eyJhbGei0iJIUzMANCI9.eyJzdWIi0iImemFzaWVyIiwiaWFOIjoxNTkTMDE3MDcxLCI1eHAT0jE40TUWMjA2N
zEsImF1dGgi01siUFJJQOVfQOhFQOsiLCISTAOXFXONVUTRPTUVSIT19.ELAeSfoIL_u2QyhpjwDoqQbL4H11Ik
uir9CIPdOT80w2115216QY6ZaKvW883txI" #frasier
{"ur1":"http://1localhost:8080/api/carts/items?username=norm&name=chardonnay", "message"

:"Forbidden","description":"caller[frasier] is forbidden from making this
request","timestamp":"2020-07-17720:40:10.4515787"} @

33

@ frasier received a 403/Forbidden error when attempting to add to someone else’s cart
Norm can add items to his own cart because his username matches the username of the cart.

Norm Can Add to His Own Cart

$ curl -X POST http://localhost:8080/api/carts/items?name=beer -H "Authorization:
Bearer
eyJhbGci0iJIUzM4ANCI9.eyJzdWIi0iJub3JtIiwiaWF@IjoxNTkTMDE3MDY1LCI1eHAT0jE40TUWMjA2NjUSIT
mF1dGgi01siUkIMRVIDVVNUTOTFU11dfQ.UX4yPDudLzWdEAObbI1i10tZ7ePUTRSIH_o_hayPr1mNxhjU5DL6X
Q42iRCLLuFgw" #norm

{"username":"norm", "items":["beer"]}

11.6. getCart()

The getCart() access rules only allow users to get their own cart, but also allows users with the
CLERK role to get anyone’s cart.

getCart() Access Rules

("#username == authentication.name or hasRole('CLERK')") @
CartDTO getCart(String username);

Frasier cannot get Norm’s cart because anyone lacking the CLERK role can only get a cart that
matches their authenticated username.

Frasier Cannot Get Norms Cart

$ curl -X GET http://localhost:8080/api/carts?username=norm -H "Authorization: Bearer
eyJhbGci0iJIUzM4ANCI9.eyJzdWIi0iImemFzaWVyIiwiaWF@IjoxNTkTMDE3MDcxLCI1eHA10jE40TUWM)A2N
zEsImF1dGgi01lsiUFJJQOVFQOhFQAsiLCISTOXFXONVUTRPTUVSIT19.ELAe5foIL_u2QyhpjwDoqQbL4HT1Ik
uir9CIPdOT80w21I521G6QY6ZaKvW883txI" #frasier
{"ur1l":"http://localhost:8080/api/carts?username=norm", "message":"Forbidden", "descript

ion":"caller[frasier] is forbidden from making this request”,"timestamp":"2020-07-
17720:44:05.8991927"}

Norm can get his own cart because the username of the cart matches the authenticated username
of his accessing the cart.

Norm Can Get Norms Cart

$ curl -X GET http://localhost:8080/api/carts -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iJub3JtIiwiaWF@IjoxNTkTMDE3MDY1LCI1eHAT0jE40TUWMjAZNjUST
mF1dGgi01siUk9IMRVIDVVNUTA1FUiIdfQ.UX4yPDu@LzWJEAObbI1i0tZ7ePUTRSIH_o_hayPrimNxhjU5DL6X
Q42iRCLLuFgw" #norm

{"username":"norm", "items":["beer"]}

Woody can get Norm’s cart because he has the CLERK role.

34

Woody Can Get Norms Cart

$ curl -X GET http://localhost:8080/api/carts?username=norm -H "Authorization: Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iI3b29keSIsImlhdCI6GMTUSNTAXNZATMSwiZXhwIjoxODk TMDIwN;jUxL
CJhdXRoIjpbI1IPTEVfQOxFUksiXX0.kreSFPgTIr2heGMLcjHFrglydvhPZKR7Iy4F6b76WNIvAkbZVhfymbQ
xekuPL-Ai" #woody

{"username":"norm","items":["beer"]}

11.7. removeCart()

The removeCart() access rules only allow carts to be removed by their owner or by someone with
the ADMIN role.

removeCart() Access Rules

("#username == authentication.name or hasRole('ADMIN')")
boolean removeCart(String username);

Woody cannot remove Norm’s cart because his authenticated username does not match the cart
and he lacks the ADMIN role.

Woody Cannot Remove Norms Cart

$ curl -X DELETE http://localhost:8080/api/carts?username=norm -H "Authorization:
Bearer
eyJhbGci0iJIUzMANCI9.eylzdWIi0iI3b29keSIsImlhdCI6GMTUSNTAXNZATMSwiZXhwIjoxODk TMDIwN;jUxL
CJhdXRoIjpbI1IPTEVFQOxFUksiXX@.kreSFPgTIr2heGMLcjHFrglydvhPZKR7Iy4F6b76WNIvAkbZVhfymbQ
xekuPL-Ai" #woody

{"ur1":"http://1localhost:8080/api/carts?username=norm", "message”:"Forbidden","descript

ion":"caller[woody] is forbidden from making this request","timestamp":"2020-07-
17720:48:40.8661937"}

Sam can remove Norm’s cart because he has the ADMIN role. Once Same deletes the cart, Norm
receives a 404/Not Found because it is not longer there.

Sam Can Remove Norms Cart

$ curl -X GET http://localhost:8080/api/whoAmI -H "Authorization: Bearer
eyJhbGci01JIUzMANCI9.eyJzdWIi01JzYWOiLCIpYXQi0jETOTUWMTcwNDQsImV4cCI6MTg5NTAYMDYONCwiY
XV0aCI6WyJSTOXFXOFETU10I119.1ICzAn1r2UyrpGJQSYk9ugxMAAQ9QC1Dw7GKedNiGvCyTasMfWSStrqxVeU
it-cb4" #sam

[sam, [ROLE_ADMINT]

$ curl -X DELETE http://localhost:8080/api/carts?username=norm -H "Authorization:
Bearer

eyJhbGci01JIUzM4NCI9.eylzdWIi01JzYWOiLCIpYXQiOFETOTUWMT cwNDQsImV4cCIOMTg5NTAYMDY@NCwiY
XV0aCI6WyJSTOxFXOFETU10I119.1ICzAn1r2UyrpGJQSYk9ugxMAAQ9QC1Dw7GKedNiGvCyTasMfWSStrgxVeU
it-cb4" #sam

35

36

$ curl -X GET http://localhost:8080/api/carts -H "Authorization: Bearer
eyJhbGeci0iJIUzMANCI9.eylzdWIi0iJub3JtIiwiaWF@IjoxNTkTMDE3MDY1LCI1eHAT0jE40TUWMjA2NjUST
mF1dGgi01siUkIMRVIDVVNUTOTFU11dfQ.UX4yPDudLzWJEAObbI1i10tZ7ePUTRSIH_o_hayPr1mNxhjU5DL6X
Q42iRCLLuFgw" #norm

{"ur1":"http://1localhost:8080/api/carts", "message":"Not Found","description":"no cart
found for norm","timestamp":"2020-07-17720:50:59.4652107"}

Chapter 12. Summary

I don’t know about you— but I had fun with that!
To summarize — In this module, we learned:
* to separate the authentication from the operation call such that the operation call could be in a
separate server or even an entirely different service
* whatis a JSON Web Token (JWT) and JSON Web Secret (JWS)
* how trust is verified using JWS

* how to write and/or integrate custom authentication and authorization framework classes to
implement an alternate security mechanism in Spring/Spring Boot

* how to leverage Spring Expression Language to evaluate parameters and properties of the
SecurityContext

37

	JWT/JWS Token Authn/Authz
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Identity and Authorities
	2.1. BASIC Authentication/Authorization

	Chapter 3. Tokens
	3.1. Token Authentication/Login
	3.2. Token Authorization/Operation
	3.3. Authentication Separate from Authorization
	3.4. JWT Terms

	Chapter 4. JWT Authentication
	4.1. Example JWT Authentication/Login Flow
	4.2. Example JWT Authorization/Operation Call Flow

	Chapter 5. Maven Dependencies
	Chapter 6. JwtConfig
	6.1. JwtConfig application.properties

	Chapter 7. JwtUtil
	7.1. Dependencies on JwtUtil
	7.2. JwtUtil: generateToken()
	7.3. JwtUtil: generateToken() Helper Methods
	7.4. Example Encoded JWS
	7.5. Example Decoded JWS Header and Body
	7.6. JwtUtil: parseToken()
	7.7. JwtUtil: parseToken() Helper Methods

	Chapter 8. JwtAuthenticationFilter
	8.1. JwtAuthenticationFilter Relationships
	8.2. JwtAuthenticationFilter: Constructor
	8.3. JwtAuthenticationFilter: attemptAuthentication()
	8.4. JwtAuthenticationFilter: attemptAuthentication() DTO
	8.5. JwtAuthenticationFilter: attemptAuthentication() Helper Method
	8.6. JwtAuthenticationFilter: successfulAuthentication()

	Chapter 9. JwtAuthorizationFilter
	9.1. JwtAuthorizationFilter Relationships
	9.2. JwtAuthorizationFilter: Constructor
	9.3. JwtAuthorizationFilter: doFilterInternal()
	9.4. JwtAuthenticationToken
	9.5. JwtEntryPoint

	Chapter 10. API Security Configuration
	10.1. API Authentication Manager Builder
	10.2. API HttpSecurity Key JWS Parts
	10.3. API HttpSecurity Full Details

	Chapter 11. Example JWT/JWS Application
	11.1. Roles and Role Inheritance
	11.2. CartsService
	11.3. Login
	11.4. createCart()
	11.5. addItem()
	11.6. getCart()
	11.7. removeCart()

	Chapter 12. Summary

