Spring Data JPA Repository
jim stafford

Fall 2024 v2022-07-24: Built: 2024-11-19 21:34 EST

Table of Contents

1. Introduction
1.1. Goals
1.2. Objectives
2. Spring Data JPA Repository
3. Spring Data Repository Interfaces
4. SongsRepository
4.1. Song @Entity
4.2. SongsRepository
5. Configuration
5.1. Injection
6. CrudRepository
6.1. CrudRepository save() New
6.2. CrudRepository save() Update Existing
6.3. CrudRepository save()/Update Resulting SQL
6.4. New Entity?
6.5. CrudRepository existsById()
6.6. CrudRepository findById()
6.7. CrudRepository delete()
6.8. CrudRepository deleteById()
6.9. Other CrudRepository Methods
7. PagingAndSortingRepository
7.1. Sorting
7.2. Paging
7.3. Page Result
7.4. Slice Properties
7.5. Page Properties
7.6. Stateful Pageable Creation
7.7. Page Iteration
8. Query By Example
8.1. Example Object
8.2. findAll By Example
8.3. Primitive Types are Non-Null
8.4. matchingAny ExampleMatcher
8.5. Ignoring Properties
8.6. Contains ExampleMatcher
9. Derived Queries
9.1. Single Field Exact Match Example
9.2. Query Keywords

© 00 00 I I O O U U B D R W N R,

NN NN NN R R B R B R oRm | |, |l) |l) |
BW W R R O O W 0000 Ul Ul W W R RO

9.3. Other Keywords
9.4. Multiple Fields
9.5. Collection Response Query Example
9.6. Slice Response Query Example
9.7. Page Response Query Example
10. JPA-QL Named Queries
10.1. Mapping @NamedQueries to Repository Methods
11. @Query Annotation Queries
11.1. @Query Annotation Native Queries
11.2. @Query Sort and Paging
12. JpaRepository Methods
12.1. JpaRepository Type Extensions
12.2. JpaRepository flush()
12.3. JpaRepository deleteInBatch
12.4. JPA References
13. Custom Queries
13.1. Custom Query Interface
13.2. Repository Extends Custom Query Interface
13.3. Custom Query Method Implementation
13.4. Repository Implementation Postfix
13.5. Helper Methods
13.6. Naive Injections
13.7. Required Injections
13.8. Calling Custom Query
14. Summary

14.1. Comparing Query Types

24
25
25
26
27
29
29
31
31
32
33
33
34
35
35
38
38
38
38
39
39
40
40
41
42
42

Chapter 1. Introduction

JDBC/SQL provided a lot of capabilities to interface with the database, but with a significant amount
of code required. JPA simplified the mapping, but as you observed with the JPA DAO
implementation — there was still a modest amount of boilerplate code. Spring Data JPA Repository
leverages the capabilities and power of JPA to map @Entity classes to the database but also further
eliminates much of the boilerplate code remaining with JPA by leveraging Dynamic Interface Proxy
techniques.

1.1. Goals

The student will learn:

* to manage objects in the database using the Spring Data Repository
* to leverage different types of built-in repository features

* to extend the repository with custom features when necessary

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

declare a JpaRepository for an existing JPA @Entity
. perform simple CRUD methods using provided repository methods

. add paging and sorting to query methods

1.

2

3

4. implement queries based on POJO examples and configured matchers

5. implement queries based on predicates derived from repository interface methods
6

. implement a custom extension of the repository for complex or compound database access

Chapter 2. Spring Data JPA Repository

Spring Data JPA provides repository support for JPA-based mappings. "' We start off by writing no
mapping code —just interfaces associated with our @Entity and primary key type—and have
Spring Data JPA implement the desired code. The Spring Data JPA interfaces are layered — offering
useful tools for interacting with the database. Our primary @Entity types will have a repository
interface declared that inherit from JpaRepository and any custom interfaces we optionally define.

Figure 1. Spring Data JPA Repository Interfaces

The extends path was modified some with the latest version of Spring Data Commons, but the
JpaRepository ends up being mostly the same by the time the interfaces get merged at the bottom of
the inheritance tree.

[1] "Spring Data JPA - Reference Documentation”

https://docs.spring.io/spring-data/jpa/docs/2.4.3/reference/html/#preface
https://docs.spring.io/spring-data/jpa/docs/2.4.3/reference/html/#preface

Chapter 3. Spring Data Repository Interfaces

As we go through these interfaces and methods, please remember that all of the method
implementations of these interfaces (except for custom) will be provided for us.

Repository<T, ID>

CrudRepository<T,ID>

PagingAndSortingRepository<T,
ID>

ListPagingAndSortingRepository<

T,ID>

ListCrudRepository

QueryByExampleExecutor<T>

JpaRepository<T, ID>

SongsRepositoryCustom/
SongsRepositoryCustomImpl

SongsRepository

marker interface capturing the @Entity class and primary key
type. Everything extends from this type.

depicts many of the CRUD capabilities we demonstrated with
the JPA DAO in the previous JPA lecture

Spring Data provides some nice end-to-end support for sorting
and paging. This interface adds some sorting and paging to
the findA11() query method provided in CrudRepository.

overrides the PagingAndSorting-based Iterable<T> return type
to be a List<T>

overrides all CRUD-based Iterable<T> return types with
List<T>
provides query-by-example methods that use prototype
@Entity instances and configured matchers to locate matching
results

brings together the CrudRepository,
PagingAndSortingRepository, = and QueryByExampleExecutor
interfaces and adds several methods of its own. Unique to JPA,
there are methods related to flush and working with JPA
references.

we can write our own extensions for complex or compound
calls—while taking advantage of an EntityManager and
existing repository methods

our repository inherits from the repository hierarchy and
adds additional methods that are automatically implemented
by Spring Data JPA

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/PagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/PagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListPagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListPagingAndSortingRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/ListCrudRepository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/query/QueryByExampleExecutor.html
https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-jpa/jpa-song-example/src/main/java/info/ejava/examples/db/jpa/songs/repo/SongsRepositoryCustom.java?ref_type=heads
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-jpa/jpa-song-example/src/main/java/info/ejava/examples/db/jpa/songs/repo/SongsRepositoryCustomImpl.java?ref_type=heads
https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/db/db-jpa/jpa-song-example/src/main/java/info/ejava/examples/db/jpa/songs/repo/SongsRepository.java?ref_type=heads

Chapter 4. SongsRepository

All we need to create a functional repository is an @Entity class and a primary key type. From our
work to date, we know that our @Entity is the Song class and the primary key is the primitive int

type.

4.1. Song @Entity

Song @Entity Example

public class Song {
//be sure this is jakarta.persistence.Id
private int id;

Use Correct @Id

There are many @Id annotation classes. Be sure to be the correct one for the
technology you are currently mapping. In this case, use jakarta.persistence.Id.

4.2. SongsRepository

We declare our repository at whatever level of Repository is appropriate for our use. It would be
common to simply declare it as extending JpaRepository.

public interface SongsRepository extends JpaRepository<Song, Integer> {}@® @

@ Song is the repository type

@ Integer is used for the primary key type for an int

Consider Using Non-Primitive Primary Key Types
(r) Although these lecture notes provide ways to mitigate issues with generated
- primary keys using a primitive data type, you will find that Spring Data JPA works
easier with nullable object types.

Repositories and Dynamic Interface Proxies

Having covered the lectures on Dynamic Interface Proxies and have seen the

o amount of boilerplate code that exists for persistence —you should be able to
imagine how the repositories could be implemented with no up-front, compilation
knowledge of the @Entity type.

Chapter 5. Configuration

As you may have noticed and will soon see, there is a lot triggered by the addition
O of the repository interface. You should have the state of your source code in a
stable state and committed before adding the repository.

Assuming your repository and entity classes are in a package below the class annotated with
@SpringBootApplication—all that is necessary is the @EnableJpaRepositories to enable the necessary
auto-configuration to instantiate the repository.

Typical JPA Repository Support Declaration

public class JPASongsApp {

If, however, your repository or entities are not located in the default packages scanned, their
packages can be scanned with configuration options to the @EnableJpaRepositories and @EntityScan
annotations.

Configuring Repository and @Entity Package Scanning

(basePackageClasses = {SongsRepository.class}) @ @
(basePackageClasses = {Song.class}) @ ®

@ the Java class provided here is used to identify the base Java package
@ where to scan for repository interfaces

® where to scan for @Entity classes

5.1. Injection

With the repository interface declared and the JPA repository support enabled, we can then
successfully inject the repository into our application.

SongsRepository Injection

private SongsRepository songsRepo;

Chapter 6. CrudRepository

Let’s start looking at the capability of our repository — starting with the declared methods of the
CrudRepository interface and the return type overrides of the ListCrudRepository interface.

CrudRepository<T, ID> and ListCrudRepository<T, ID> Interfaces

public interface CrudRepository<T, ID> extends Repository<T, ID> {
<S extends T> S save(S);
<S extends T> Iterable<S> saveAll(Iterable<S>);
Optional<T> findById(ID);
boolean existsById(ID);
Iterable<T> findAl1();
Iterable<T> findA11ById(Iterable<ID>);
long count();
void deleteById(ID);
void delete(T);
void deleteAl1ById(Iterable<? extends ID>);
void deleteAll(Iterable<? extends T>);
void deleteAll();
}

public interface ListCrudRepository<T, ID> extends CrudRepository<T, ID> {
<S extends T> List<S> saveAll(Iterable<S>);
List<T> findAll();
List<T> findA11ById(Iterable<ID>);

}

6.1. CrudRepository save() New

We can use the CrudRepository.save() method to either create or update our @Entity instance in the
database.

In this specific example, we call save() with a new object. The JPA provider can tell this is a new
object because the generated primary key value is currently unassigned. An object type has a
default value of null in Java. Our primitive int type has a default value of 0 in Java.

CrudRepository.save() New Example

//given an entity instance

Song song = mapper.map(dtoFactory.make());
assertThat(song.getId()).isZero(); @®
//when persisting

songsRepo.save(song);

//then entity is persisted
then(song.getId()).isNotZero(); @

@ default value for generated primary key using primitive type interpreted as unassigned

@ primary key assigned by provider

The following shows the SQL that is generated by JPA provider to add the new object to the
database.

CrudRepository.save() New Example SQL

select next value for reposongs_song_sequence
insert into reposongs_song (artist, released, title, id) values (7, ?, 7, ?7)

6.2. CrudRepository save() Update Existing
The CrudRepository.save() method is an "upsert".

o if the @Entity is new, the repository will call EntityManager.persist as you saw in the previous
example

« if the @Entity exists, the repository will call EntityManager.merge to update the database

CrudRepository.save() Update Existing Example

//given an entity instance

Song song = mapper.map(dtoFactory.make());

songsRepo.save(song);

songsRepo. flush(); //for demo only @

Song updatedSong = Song.builder()
.id(song.getId()) ®
.title("new title")
.artist(song.getArtist())
.released(song.getReleased())
.build(); @

//when persisting update

songsRepo.save(updatedSong);

//then entity is persisted

then(songsRepo.findOne(Example.of(updatedSong))).isPresent(); @

@ making sure @Entity has been saved
@ a new, unmanaged @Entity instance is created for a fresh update of the database
® new, unmanaged @Entity instance has an assigned, non-default primary key value

@ object’s new state is found in the database

6.3. CrudRepository save()/Update Resulting SQL

The following snippet shows the SQL executed by the repository/EntityManager during the
save() —where it must first determine if the object exists in the database before calling SQL INSERT
or UPDATE.

CrudRepository.save() Update Existing Example SQL

select ... @

from reposongs_song song@_

where song@_.id=?

binding parameter [1] as [INTEGER] - [1]

update reposongs_song set artist=?, released=?, title=? where id=? @
binding parameter [1] as [VARCHAR] - [The Beach Boys]

binding parameter [2] as [DATE] - [2010-06-07]

binding parameter [3] as [VARCHAR] - [new title]

binding parameter [4] as [INTEGER] - [1]

@ EntityManager.merge() performs SELECT to determine if assigned primary key exists and loads
that state

@ EntityManager.merge() performs UPDATE to modify state of existing @Entity in database

6.4. New Entity?

We just saw where the same method (save()) was used to both create or update the object in the
database. This works differently depending on how the repository can determine whether the
@Entity instance passed to it is new or not.

 for auto-assigned primary keys, the @Entity instance is considered new if @Version (not used in
our example) and @Id are not assigned — as long as the @Id type is non-primitive.

» for manually assigned and primitive @Id types, @Entity can implement the Persistable<ID>
interface to assist the repository in knowing when the @Entity is new.

Persistable<ID> Interface
public interface Persistable<ID> {

ID getId();
boolean isNew();

6.5. CrudRepository existsByld()

Spring Data JPA adds a convenience method that can check whether the @Entity exists in the
database without loading the entire object or writing a custom query.

The following snippet demonstrates how we can check for the existence of a given ID.

CrudRepository existsById()

//given a persisted entity instance
Song pojoSong = mapper.map(dtoFactory.make());
songsRepo.save(pojoSong);

//when - determining if entity exists

boolean exists = songsRepo.existsById(pojoSong.getId());
//then

then(exists).isTrue();

The following shows the SQL produced from the findById() call.

CrudRepository existsByld() SQL
select count(*) from reposongs_song s1_0 where s1_0.id=? @

® count(*) avoids having to return all column values

6.6. CrudRepository findByld()

If we need the full object, we can always invoke the findById() method, which should be a thin
wrapper above EntityManager.find(), except that the return type is a Java Optional<T> versus the

@Entity type (T).

CrudRepository.findByld()

//when - finding the existing entity

Optional<Song> result = songsRepo.findById(pojoSong.getId());
//then

then(result).isPresent(); @

® findById() always returns a non-null Optional<T> object

6.6.1. CrudRepository findById() Found Example

The Optional<T> can be safely tested for existence using isPresent(). If isPresent() returns true,
then get() can be called to obtain the targeted @Entity.

Present Optional Example

//given
then(result).isPresent();
//when - obtaining the instance
Song dbSong = result.get();
//then - instance provided
then(dbSong).isNotNull();

6.6.2. CrudRepository findByld() Not Found Example

If isPresent() returns false, then get() will throw a NoSuchElementException if called. This gives
your code some flexibility for how you wish to handle a target @Entity not being found.

Missing Optional Example

//given

then(result).isNotPresent();

//then - the optional is asserted during the get()

assertThatThrownBy(() -> result.get())
.isInstanceOf(NoSuchElementException.class);

6.7. CrudRepository delete()

The repository also offers a wrapper around EntityManager.delete() where an instance is required.
Whether the instance existed or not, a successful call will always result in the @Entity no longer in
the database.

CrudRepository delete() Example

//when - deleting an existing instance
songsRepo.delete(existingSong);

//then - instance will be removed from DB
then(songsRepo.existsById(existingSong.getId())).isFalse();

6.7.1. CrudRepository delete() Not Loaded

However, if the instance passed to the delete() method is not in its current Persistence Context,
then it will load it before deleting so that it has all information required to implement any JPA
delete cascade events.

CrudRepository delete() Exists Example SQL

select ... from reposongs_song s1_0 where s1_0.id=? @
delete from reposongs_song where id=?

@ @Entity loaded as part of implementing a delete

JPA Supports Cascade Actions

JPA relationships can be configured to perform an action (e.g., delete) to both sides
(r) of the relationship when one side is acted upon (e.g., deleted). This could allow a
parent Album to be persisted, updated, or deleted with all of its child Songs with a
single call to the repository/EntityManager.

6.7.2. CrudRepository delete() Not Exist
If the instance did not exist, the delete() call silently returns.

CrudRepository delete() Does Not Exists Example

//when - deleting a non-existing instance

10

songsRepo.delete(doesNotExist); @

@ no exception thrown for not exist

CrudRepository delete() Does Not Exists Example SQL

select ... from reposongs_song s1_0 where s1_0.id=? @

® no @Entity was found/loaded as a result of this call

6.8. CrudRepository deleteById()

Spring Data JPA also offers a convenience deleteById() method taking only the primary key.

CrudRepository deleteByld() Example

//when - deleting an existing instance
songsRepo.deleteById(existingSong.getId());

However, since this is JPA under the hood and JPA may have cascade actions defined, the @Entity is
still retrieved if it is not currently loaded in the Persistence Context.

CrudRepository deleteByld() Example SQL

select ... from reposongs_song s1_0 where s1_0.id=?
delete from reposongs_song where id=?

deleteById will Throw Exception
Calling deleteById for a non-existant @Entity will

* throw a EmptyResultDataAccessException <= Spring Boot 3.0.6

* quitely return >= Spring Boot 3.1.0

6.9. Other CrudRepository Methods

That was a quick tour of the CrudRepository<T,ID> interface methods. The following snippet shows
the methods not covered. Most additional CrudRepository methods provide convenience methods
around the entire repository. The ListCrudRepository override the Iterable<T> return type with
List<T>.

Other CrudRepository Methods

//public interface CrudRepository<T, ID> extends Repository<T, ID> {
<S extends T> Iterable<S> saveAll(Iterable<S>);

Iterable<T> findAll();

Iterable<T> findA11ById(Iterable<ID>);

long count();

11

12

void deleteAll(Iterable<? extends T>);
void deleteAll();

//public interface ListCrudRepository<T, ID> extends CrudRepository<T, ID> {
<S extends T> List<S> saveAll(Iterable<S>);

List<T> findAl1();

List<T> findA11Byld(Iterable<ID>);

Chapter 7. PagingAndSortingRepository

Before we get too deep into queries, it is good to know that Spring Data has first-class support for
sorting and paging.
* sorting - determines the order which matching results are returned

» paging - breaks up results into chunks that are easier to handle than entire database collections

Here is a look at the declared methods of the PagingAndSortingRepository<T,ID> interface and the
ListPagingAndSortingRepository<T,ID> overrides. These interfaces define findAll() methods that
accept paging and sorting parameters and return types. They define extra parameters not included
in the CrudRepository findAll() methods.

PagingAndSortingRepository<T,ID> Interface

public interface PagingAndSortingRepository<T, ID> extends Repository<T, ID> {
Iterable<T> findAl1l(Sort);
Page<T> findAl1(Pageable);

}

public interface ListPagingAndSortingRepository<T, ID> extends
PagingAndSortingRepository<T, ID> {

List<T> findAl1l(Sort);
}

We will see the paging and sorting option come up in many other query types as well.

Use Paging and Sorting for Collection Queries

All queries that return a collection should seriously consider adding paging and

@ sorting parameters. Small test databases can become significantly populated
production databases over time and cause eventual failure if paging and sorting
are not applied to unbounded collection query return methods.

7.1. Sorting
Sorting can be performed on one or more properties and in ascending and descending order.
The following snippet shows an example of calling the findA11() method and having it return

* Song entities in descending order according to release date

* Song entities in ascending order according to id value when release dates are equal

Sort.by() Example

//when

List<Song> byReleased = songsRepository.findA11(
Sort.by("released").descending().and(Sort.by("id").ascending())); ® @

//then

13

LocalDate previous = null;
for (Song s: byReleased) {
if (previous!=null) {

}

then(previous).isAfterOrEqualTo(s.getReleased()); //DESC order

previous=s.getReleased();

@ results can be sorted by one or more properties

@ order of sorting can be ascending or descending

The following snippet shows how the SQL was impacted by the Sort.by() parameter.

Sort.by() Example SQL

select ...

from reposongs_song s1_0
order by s1_0.released desc,s1_0.id @

@ Sort.by() added the extra SQL order by clause

7.2. Paging

Paging permits the caller to designate how many instances are to be returned in a call and the
offset to start that group (called a page or slice) of instances.

The snippet below shows an example of using one of the factory methods of Pageable to create a
PageRequest definition using page size (limit), offset, and sorting criteria. If many pages are
traversed — it is advised to sort by a property that will produce a stable sort over time during table

modifications.

Defining Initial Pageable

//given

int offset = 0;
int pageSize = 3;
Pageable pageable = PageRequest.of(offset/pageSize, pageSize, Sort.by("released"));®

@

//when

Page<Song> songPage = songsRepository.findAll(pageable);

@ using PageRequest factory method to create Pageable from provided page information

@ parameters are pageNumber, pageSize, and Sort

Q

14

Use Stable Sort over Large Collections

Try to use a property for sort (at least by default) that will produce a stable sort
when paging through a large collection to avoid repeated or missing objects from
follow-on pages because of new changes to the table.

7.3. Page Result
The page result is represented by a container object of type Page<T>, which extends Slice<T>. I will
describe the difference next, but the PagingAndSortingRepository<T,ID> interface always returns a

Page<T>, which will provide:

* the sequential number of the page/slice ——

i
@ Slice
* the requested size of the page/slice
number
* the number of elements found size
. . elements
* the total number of elements available in the
database
wextends»

@ Page d

totalElements

Figure 2. Page<T> Extends Slice<T>

Page Issues Extra Count Query

(r) Of course, the total number of elements available in the database does not come
- for free. An extra query is performed to get the count. If that attribute is
unnecessary, use a Slice return using a derived query.

7.4. Slice Properties

The S1lice<T> base interface represents properties about the content returned.

Slice Properties

//then

Slice songSlice = songPage; @

then(songSlice).isNotNull();
then(songSlice.isEmpty()).isFalse();
then(songSlice.getNumber()).isEqualTo(0); @
then(songSlice.getSize()).isEqualTo(pageSize); ®
then(songSlice.getNumberOfElements()).isEqualTo(pageSize); @

List<Song> songslList = songSlice.getContent();
then(songsList).hasSize(pageSize);

@ Page<T> extends Slice<T>
@ slice increment — first slice is 0

® the number of elements requested for this slice

15

@ the number of elements returned in this slice

7.5. Page Properties
The Page<T> derived interface represents properties about the entire collection/table.

The snippet below shows an example of the total number of elements in the table being made
available to the caller.

Page Properties

then(songPage.getTotalElements()).isEqualTo(savedSongs.size()); //unique to Page

The Page<T> content and number of elements is made available through the following set of SQL

queries.
Page Resulting SQL
select ... from reposongs_song s1_0 @

order by s1_0.released
offset 7 rows fetch first ? rows only

select count(s1_0.id) from reposongs_song s1_0 @

@ SELECT used to load page of entities (aka the Slice information)

@ SELECT COUNT(*) used to return total matches in the database —returned or not because of
Pageable limits (aka the Page portion of the information)

7.6. Stateful Pageable Creation

In the above example, we created a Pageable from stateless parameters — passing in pageNumber,

pageSize, and sorting specifications.
Review: Stateless Pageable Definition

Pageable pageable = PageRequest.of(offset / pageSize, pageSize, Sort.by("released"))
HO)

@ parameters are pageNumber, pageSize, and Sort

We can also use the original Pageable to generate the next or other relative page specifications.

Relative Pageable Creation
Pageable next = pageable.next();

Pageable previous = pageable.previousOrFirst();
Pageable first = pageable.first();

16

7.7. Page Iteration

The next Pageable can be used to advance through the complete set of query results, using the
previous Pageable and testing the returned Slice.

Page Iteration

for (int i=1; songSlice.hasNext(); i++) { @
pageable = pageable.next(); @
songSlice = songsRepository.findAll(pageable);
songsList = songSlice.getContent();
then(songSlice).isNotNull();
then(songSlice.getNumber()).isEqualTo(i);
then(songSlice.getSize()).isEqualTo(pageSize);
then(songSlice.getNumberOfElements()).isLessThanOrEqualTo(pageSize);
then(((Page)songSlice).getTotalElements()).isEqualTo(savedSongs.size());//unique
to Page
+
then(songSlice.hasNext()).isFalse();
then(songSlice.getNumber()).isEqualTo(songsRepository.count() / pageSize);

@ Slice.hasNext() will indicate when previous Slice represented the end of the results

@ next Pageable obtained from previous Pageable
The following snippet shows an example of the SQL issued to the database with each page request.

Page Iteration SQL
select ... from reposongs_song s1_0
order by s1_0.released
offset ? rows fetch first ? rows only
--binding parameter [1] as [INTEGER] - [6] @
--binding parameter [2] as [INTEGER] - [3]

select count(s1_0.id) from reposongs_song s1_0

@ paging advances offset

17

Chapter 8. Query By Example

Not all queries will be as simple as findA11(). We now need to start looking at queries that can
return a subset of results based on them matching a set of predicates. The
QueryByExampleExecutor<T> parent interface to JpaRepository<T,ID> provides a set of variants to the
collection-based results that accepts an "example" to base a set of predicates off of.

QueryByExampleExecutor<T> Interface

public interface QueryByExampleExecutor<T> {

<S extends T> Optional<S> findOne(Example<S>);

<S extends T> Iterable<S> findA11(Example<S>);

<S extends T> Iterable<S> findAl1(Example<S>, Sort);

<S extends T> Page<S> findA11(Example<S>, Pageable);

<S extends T> long count(Example<S>);

<S extends T> boolean exists(Example<S>);

<S extends T, R> R findBy(Example<S>, Function<FluentQuery$FetchableFluentQuery<S>,
R>);
}

8.1. Example Object

An Example is an interface with the ability to hold onto a probe and matcher.

8.1.1. Probe Object

The probe is an instance of the repository @Entity type.

The following snippet is an example of creating a probe that represents the fields we are looking to
match.

Probe Example

//given

Song savedSong = savedSongs.get(0);

Song probe = Song.builder()
.title(savedSong.getTitle())
.artist(savedSong.getArtist())
.build(); @

@ probe will carry values for title and artist to match

8.1.2. ExampleMatcher Object

The matcher defaults to an exact match of all non-null properties in the probe. There are many
definitions we can supply to customize the matcher.

» ExampleMatcher.matchingAny() - forms an OR relationship between all predicates

18

https://docs.spring.io/spring-data/jpa/reference/repositories/query-by-example.html

» ExampleMatcher.matchingAll() - forms an AND relationship between all predicates

The matcher can be broken down into specific fields, designing a fair number of options for String-
based predicates but very limited options for non-String fields.

» exact match e contains
* case-insensitive match * regular expression
e starts with, ends with * include or ignore nulls

The following snippet shows an example of the default ExampleMatcher.

Default ExampleMatcher
ExampleMatcher matcher = ExampleMatcher.matching(); @

@ default matcher is matchingAll

8.2. findAll By Example

We can supply an Example instance to the findA11() method to conduct our query.
The following snippet shows an example of using a probe with a default matcher. It is intended to

locate all songs matching the artist and title we specified in the probe.

//when

List<Song> foundSongs = songsRepository.findA11(
Example.of(probe),//default matcher is matchingAll() and non-null
Sort.by("id"));

However, there is a problem. Our Example instance with supplied probe and default matcher did not
locate any matches.

No Matches Found - huh?

//then - not found
then(foundSongs).isEmpty();

8.3. Primitive Types are Non-Null

The reason for the no-match is that the primary key value is being added to the query, and we did
not explicitly supply that value in our probe.

No Matches SQL

select ... from reposongs_song s1_0
where s1_0.1d=? --filled in with 0 @
and s1 _0@.artist=? and s1_0.title=?

19

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#query-by-example.matchers

order by s1_0.id
--binding parameter [1] as [INTEGER] - [0]
--binding parameter [2] as [VARCHAR] - [Creedence Clearwater Revival]
--binding parameter [3] as [VARCHAR] - [Quo Vadis green]

@ 1d=0 test for unassigned primary key, prevents match being found

The id field is a primitive int type that cannot be null and defaults to a 0 value. That, and the fact
that the default matcher is a "match all" (using AND) keeps our example from matching anything.

@Entity Uses Primitive Type for Primary Key

@Entity

public class Song {
@Id @GeneratedValue
private int id; @

@ id can never be null and defaults to 0, unassigned value

8.4. matchingAny ExampleMatcher

One option we could take would be to switch from the default matchingAll matcher to a matchingAny
matcher.

The following snippet shows an example of how we can specify the override.

matchingAny ExampleMatcher Example

//when

List<Song> foundSongs = songsRepository.findAll(
Example.of(probe, ExampleMatcher.matchingAny()),®
Sort.by("id"));

@ using matchingAny versus default matchingAll
This causes some matches to occur, but it likely is not what we want.

* the id predicate is still being supplied

* the overall condition does not require the artist AND title to match.

matchingAny ExampleMatcher Example SQL

select ...

from reposongs_song s1_0

where s1 0.id=? --filled in with 0 @®
or s1 @.artist=? or s1 0.title=?

order by s1_0.1d

® matching any ("or") of the non-null probe values

20

8.5. Ignoring Properties
What we want to do is use a matchAll matcher and have the non-null primitive id field ignored.
The following snippet shows an example matcher configured to ignore the primary key.

matchingAll ExampleMatcher with Ignored Property

ExampleMatcher ignoreld = ExampleMatcher.matchingAl1().withIgnorePaths("id");®
//when
List<Song> foundSongs = songsRepository.findA11(

Example.of(probe, ignoreld), @

Sort.by("id"));
//then
then(foundSongs).isNotEmpty();
then(foundSongs.get(0).getId()).isEqualTo(savedSong.qgetId());

@ id primary key is being excluded from predicates
@ non-null and non-id fields of probe are used for AND matching

The following snippet shows the SQL produced. This SQL matches only the title and artist fields,
without a reference to the id field.

matchingAll ExampleMatcher with Ignored Property SQL

select ...

from reposongs_song s1_0

where s1 0.artist=? and s1 0.title=? @® @
order by s1_0.id

@ the primitive int id field is being ignored

@ both title and artist fields must match

8.6. Contains ExampleMatcher

We have some options on what we can do with the String matches.

The following snippet provides an example of testing whether title contains the text in the probe
while performing an exact match of the artist and ignoring the id field.

Contains ExampleMatcher

Song probe = Song.builder()
.title(savedSong.getTitle().substring(2))
.artist(savedSong.getArtist())

.build();

ExampleMatcher matcher = ExampleMatcher
.matching()

.withIgnorePaths("id")

21

8.

.withMatcher("title", ExampleMatcher.GenericPropertyMatchers.contains());

6.1. Using Contains ExampleMatcher

The following snippet shows that the Example successfully matched on the Song we were interested
in.

Example is Found

//when

List<Song> foundSongs = songsRepository.findA11(Example.of(probe,matcher), Sort.by("
id"));

//then

then(foundSongs).isNotEmpty();
then(foundSongs.get(0).getId()).isEqualTo(savedSong.qgetId());

The following SQL shows what was performed by our Example. Both title and artist are required

to

match. The match for title is implemented as a "contains" LIKE.

Contains Example SQL

select ...

from reposongs_song s1_0

where s1_0.artist=? and s1_0.title like ? escape '\' @
order by s1_0.1d

//binding parameter [1] as [VARCHAR] - [Earth Wind and Fire]
//binding parameter [2] as [VARCHAR] - [% a God Unknown%] @

@ title parameter supplied with % characters around the probe value

@ title predicate uses a LIKE

22

Chapter 9. Derived Queries

For fairly straight forward queries, Spring Data JPA can derive the required commands from a
method signature declared in the repository interface. This provides a more self-documenting
version of similar queries we could have formed with query-by-example.

The following snippet shows a few example queries added to our repository interface to address
specific queries needed in our application.

Example Query Method Names

public interface SongsRepository extends JpaRepository<Song, Integer> {
Optional<Song> getByTitle(String title); @

List<Song> findByTitleNullAndReleasedAfter(LocalDate date); @

List<Song> findByTitleStartingWith(String string, Sort sort); ®
Slice<Song> findByTitleStartingWith(String string, Pageable pageable); @
Page<Song> findPageByTitleStartingWith(String string, Pageable pageable); ®

@ query by an exact match of title

@ query by a match of two fields

® query using sort

@ query with paging support

® query with paging support and table total

Let’s look at a complete example first.

9.1. Single Field Exact Match Example

In the following example, we have created a query method getByTitle that accepts the exact match
title value and an Optional return value.

Interface Method Signature

Optional<Song> getByTitle(String title); @
We use the declared interface method normally, and Spring Data JPA takes care of the
implementation.

Interface Method Usage

//when

Optional<Song> result = songsRepository.getByTitle(song.qgetTitle());
//then

then(result).isPresent();

23

The resulting SQL is the same as if we implemented it using query-by-example or JPA query
language.

Resulting SQL
select ...

from reposongs_song s1_0
where s1 _0.title=?

9.2. Query Keywords

Spring Data has several keywords, followed by By, that it looks for starting the interface method
name. Those with multiple terms can be used interchangeably.

Meaning Keywords
Query « find . get « search
* read * query * stream
Count * count
Exists o exists
Delete * delete
* remove

9.3. Other Keywords

Other keywords include "' ™

* Distinct (e.g., findDistinctByTitle)

* Is, Equals (e.g., findByTitle, findByTitlels, findByTitleEquals)

* Not (e.g., findByTitleNot, findByTitleIsNot, findByTitleNotEquals)

 IsNull, IsNotNull (e.g., findByTitle(null), findByTitleIsNull(), findByTitleIsNotNull())

o StartingWith, EndingWith, Containing (e.g., findByTitleStartingWith, findByTitleEndingWith,
findByTitleContaining)

* LessThan, LessThanEqual, GreaterThan, GreaterThanEqual, Between (e.g., findByIdLessThan,
findByIdBetween(lo,hi))

» Before, After (e.g., findByReleaseAfter)
* In (e.g., findByTitleIn(collection))
* OrderBy (e.g., findByTitleContainingOrderByTitle)

The list is significant but not meant to be exhaustive. Perform a web search for your specific needs
(e.g., "Spring Data Derived Query ...") if what is needed is not found here.

24

https://github.com/spring-projects/spring-data-commons/blob/3.3.1/src/main/java/org/springframework/data/repository/query/parser/PartTree.java#L61

9.4. Multiple Fields

We can define queries using one or more fields using And and Or.

The following example defines an interface method that will test two fields: title and released.
title will be tested for null and released must be after a certain date.

Multiple Fields Interface Method Declaration

List<Song> findByTitleNullAndReleasedAfter(LocalDate date);

The following snippet shows an example of how we can call/use the repository method. We are
using a simple collection return without sorting or paging.

Multiple Fields Example Use

//when
List<Song> foundSongs = songsRepository.findByTitleNullAndReleasedAfter(firstSong
.getReleased());
//then
Set<Integer> foundIds = foundSongs.stream()
.map(s->s.getId())
.collect(Collectors.toSet());
then(foundIds).isEqualTo(expectedIds);

The resulting SQL shows that a query is performed looking for null title and released after the
LocalDate provided.

Multiple Fields Resulting SQL

select ...
from reposongs_song s1_0
where s1 0.title is null and s1_0.released>?

9.5. Collection Response Query Example

We can perform queries with various types of additional arguments and return types. The
following shows an example of a query that accepts a sorting order and returns a simple collection
with all objects found.

Collection Response Interface Method Declaration

List<Song> findByTitleStartingWith(String string, Sort sort);

The following snippet shows an example of how to form the Sort and call the query method derived
from our interface declaration.

25

Collection Response Interface Method Use

//when

Sort sort = Sort.by("id").ascending();

List<Song> songs = songsRepository.findByTitleStartingWith(startingWith, sort);
//then

then(songs.size()).isEqualTo(expectedCount);

The following shows the resulting SQL — which now contains a sort clause based on our provided
definition.

Collection Response Resulting SQL

select ...
from reposongs_song s1_0
where s1_0.title like ? escape '\'
order by s1_0.1id

9.6. Slice Response Query Example

Derived queries can also be declared to accept a Pageable definition and return a Slice. The
following example shows a similar interface method declaration to what we had prior — except we
have wrapped the Sort within a Pageable and requested a Slice, which will contain only those items
that match the predicate and comply with the paging constraints.

Slice Response Interface Method Declaration

Slice<Song> findByTitleStartingWith(String string, Pageable pageable);

The following snippet shows an example of forming the PageRequest, making the call, and
inspecting the returned Slice.

Slice Response Interface Method Use

//when

PageRequest pageable=PageRequest.of(0, 1, Sort.by("id").ascending());

Slice<Song> songsSlice=songsRepository.findByTitleStartingWith(startingWith, pageable
¥

//then

then(songsSlice.getNumberOfElements()).isEqualTo(pageable.getPageSize());

The following resulting SQL shows how paging offset and limits were placed in the query.

Slice Response Resulting SQL
select ...

from reposongs_song s1_0
where s1_0.title like ? escape '\'

26

order by s1_0.id

offset 7 rows fetch first ? rows only
--binding parameter [1] as [VARCHAR] - [F%]
--binding parameter [2] as [INTEGER] - [@]
--binding parameter [3] as [INTEGER] - [2]

9.7. Page Response Query Example

We can alternatively declare a Page return type if we also need to know information about all
available matches in the table. The following shows an example of returning a Page. The only
reason Page shows up in the method name is to form a different method signature than its sibling
examples. Page is not required to be in the method name.

Page Response Interface Method Declaration

Page<Song> findPageByTitleStartingWith(String string, Pageable pageable);

The following snippet shows how we can form a PageRequest to pass to the derived query method
and accept a Page in reponse with additional table information.

Page Response Interface Method Use

//when

PageRequest pageable
Page<Song> songsPage
pageable);

//then
then(songsPage.getNumberOfElements()).isEqualTo(pageable.getPageSize());
then(songsPage.getTotalElements()).isEqualTo(expectedCount); @

PageRequest.of(0, 1, Sort.by("id").ascending());
songsRepository.findPageByTitleStartingWith(startingWith,

@ an extra property is available to tell us the total number of matches relative to the entire
table — that may not have been reported on the current page

The following shows the resulting SQL of the Page response. Note that two queries were performed.
One provided all the data required for the parent Slice and the second query provided the table
totals not bounded by the page limits.

Page Response Resulting SQL

select ... @

from reposongs_song s1_0

where s1_0.title like ? escape '\'

order by s1_0.1d

offset 7 rows fetch first ? rows only
--binding parameter [1] as [VARCHAR] - [T%]
--binding parameter [2] as [INTEGER] - [@]
--binding parameter [3] as [INTEGER] - [1]

select count(s1.0.id) @

27

from reposongs_song s1_0
where s1_0.title like ? escape '\'
--binding parameter [1] as [VARCHAR] - [T%]

@ first query provides Slice data within Pageable limits (offset ommitted for first page)

@ second query provides table-level count for Page that have no page size limits

[1] "Query Creation", Spring Data JPA - Reference Documentation

[2] "Derived Query Methods in Spring Data JPA", Atta

28

https://docs.spring.io/spring-data/data-jpa/docs/current-SNAPSHOT/reference/html/#jpa.query-methods.query-creation
https://docs.spring.io/spring-data/data-jpa/docs/current-SNAPSHOT/reference/html/#jpa.query-methods.query-creation
https://attacomsian.com/blog/derived-query-methods-spring-data-jpa

Chapter 10. JPA-QL Named Queries

Query-by-example and derived queries are targeted at flexible but mostly simple queries. Often
there is a need to write more complex queries. If you remember in JPA, we can write JPA-QL and
native SQL queries to implement our database query access. We can also register them as a
@NamedQuery associated with the @Entity class. This allows for more complex queries as well as to use
queries defined in a JPA orm.xml source file (without having to recompile)

The following snippet shows a @NamedQuery called Song.findArtistGESize that implements a query of
the Song entity’s table to return Song instances that have artist names longer than a particular size.

JPA-QL @NamedQuery Can Express More Complex Queries

(name="REPOSONGS_SONG")
(name="Song.findByArtistGESize",
query="select s from Song s where length(s.artist) >= :length")
public class Song {

The following snippet shows an example of using that @NamedQuery with the JPA EntityManager.

JPA Named Query Syntax

TypedQuery<Song> query = entityManager
.createNamedQuery("Song.findByArtistGESize", Song.class)
.setParameter("length", minLength);

List<Song> jpaFoundSongs = query.getResultList();

10.1. Mapping @NamedQueries to Repository Methods

That same tool is still available to us with repositories. If we name the query [prefix].[suffix],
where prefix is the @Entity.name of the objects returned and suffix matches the name of the
repository interface method — we can have them automatically called by our repository.

The following snippet shows a repository interface method that will have its query defined by the
@NamedQuery defined on the @Entity class. Note that we map repository method parameters to the
@NamedQuery parameter using the @Param annotation.

Repository Interface Methods can Automatically Invoke Matching @NamedQueries

//see @NamedQuery(name="Song.findByArtistGESize" in Song class
List<Song> findByArtistGESize(("length") int length); ® @

@ interface method name matches *@NamedQuery.name" suffix

@ @Param maps method parameter to @NamedQuery parameter

The following snippet shows the resulting SQL generated from the JPA-QL/@NamedQuery

29

JPA-QL Resulting SQL

select ...
from reposongs_song s1_0
where character_length(s1_0.artist)>=?

30

Chapter 11. @Query Annotation Queries

Spring Data JPA provides an option for the query to be expressed on the repository method versus
the @Entity class.

The following snippet shows an example of a similar query we did for artist length —except in
this case we are querying against title length.

Query Supplied on Repository Method

("select s from Song s where length(s.title) >= :length")
List<Song> findByTitleGESize(("length") int length);

We get the expected resulting SQL.

Resulting SQL

select ...
from reposongs_song s1_0
where character_length(s1_0.artist)>=?

Named Queries can be supplied in property file

Named queries can also be expressed in a property file—versus being placed
directly onto the method. Property files can provide a more convenient source for
O expressing more complex queries.

(namedQueriesLocation="...")

The default location is META-INF/jpa-named-queries.properties

11.1. @Query Annotation Native Queries

Although I did not demonstrate it, the @NamedQuery can also be expressed in native SQL. In most
cases with native SQL queries, the returned information is just data. We can also directly express
the repository interface method as a native SQL query as well as have it returned straight data.

The following snippet shows a repository interface method implemented as native SQL that will
return only the title columns based on size.

Example Native SQL @Query Method

(value="select s.title from REPOSONGS_SONG s where length(s.title) >= :length",
nativeQuery=true)
List<String> getTitlesGESizeNative(("length") 1int length);

The following output shows the resulting SQL. We can tell this was from a native SQL query

31

https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/config/EnableJpaRepositories.html#namedQueriesLocation

because the SQL does not contain mangled names used by JPA generated SQL.

Resulting Native SQL

select s.title @
from REPOSONGS_SONG s
where length(s.title) >= ?

@ native SQL query gets expressed exactly as we supplied it

11.2. @Query Sort and Paging

The @Query approach supports paging via Pageable parameter. Sort must be defined within the
query.

@Query Sort and Paging

(value="select s from Song s where released between :starting and :ending order
by id ASC")
Page<Song> findByReleasedBetween(LocalDate starting, LocalDate ending, Pageable
pageable);

32

Chapter 12. JpaRepository Methods

Many of the methods and capabilities of the JpaRepository<T,ID> are available at the higher level
interfaces. The JpaRepository<T,ID> itself declares four types of additional methods

e flush-based methods
* batch-based deletes
» reference-based accessors

e return type extensions

JpaRepository<T, ID> Interface
public interface JpaRepository<T, ID> extends ListCrudRepository<T, ID>,
ListPagingAndSortingRepository<T, ID>, QueryByExampleExecutor<T> {
void flush();
<S extends T> S saveAndFlush(S);
<S extends T> List<S> saveAllAndFlush(Iterable<S>);
void deleteAllInBatch(Iterable<T> entities);
void deleteAl1ByIdInBatch(Iterable<ID>);
void deleteAllInBatch();
T getReferenceById(ID);

<S extends T> List<S> findA11(Example<S>);
<S extends T> List<S> findAl11(Example<S>, Sort);

12.1. JpaRepository Type Extensions

The methods in the JpaRepository<T,ID> interface not discussed here mostly just extend existing
parent methods with more concrete return types (e.g., List versus Iterable).

Abstract Generic Spring Data Methods

public interface QueryByExampleExecutor<T> {
<S extends T> Iterable<S> findA11(Example<S> example);

Concrete Spring Data JPA Extensions
public interface JpaRepository<T, ID> extends ..., QueryByExampleExecutor<T> {

<S extends T> List<S> findA11(Example<S> example); @D

@ List<T> extends Iterable<T>

33

12.2. JpaRepository flush()

As we know with JPA, many commands are cached within the local Persistence Context and issued
to the database at some point in time in the future. That point in time is either the end of the
transaction or some event within the scope of the transaction (e.g., issue a JPA query). flush()
commands can be used to immediately force queued commands to the database. We would need to
do this before issuing a native SQL command if we want our latest changes to be included with that
command.

In the following example, a transaction is held open during the entire method because of the
@Transaction declaration. saveAll() just adds the objects to the Persistence Context and caches their
insert commands. The flush() command finally forces the SQL INSERT commands to be issued.

void flush() {

//given

List<Song> songs = dtoFactory.listBuilder().songs(5,5).stream()
.map(s->mapper.map(s))
.collect(Collectors.tolList());

songsRepository.saveAll(songs); @®

//when

songsRepository.flush(); @

@ instances are added to the Persistence Unit cache

@ instances are explicitly flushed to the database
The pre-flush actions are only to assign the primary key value.

Database Calls Pre-Flush

Hibernate: select next value for reposongs_song_sequence
Hibernate: select next value for reposongs_song_sequence

The post-flush actions insert the rows into the database.

Database Calls Post-Flush

Hibernate: insert into reposongs_song (artist, released, title, id) values (?7,7,7,7)
Hibernate: insert into reposongs_song (artist, released, title, id) values (?,7,7,7)
Hibernate: insert into reposongs_song (artist, released, title, id) values (?,7,7,7)
Hibernate: insert into reposongs_song (artist, released, title, id) values (?7,7,7,7)
Hibernate: insert into reposongs_song (artist, released, title, id) values (?,7,7,7)

Call flush() Before Issuing Native SQL Queries

-
Q You do not need to call flush() in order to eventually have changes written to the

34

database. However, you must call flush() within a transaction to assure that all
changes are available to native SQL queries issued against the database. JPA-QL
queries will automatically call flush() before executing.

12.3. JpaRepository deleteInBatch

The standard deleteAll(collection) will issue deletes one SQL statement at a time as shown in the
comments of the following snippet.

songsRepository.deleteAll(savedSongs);
//delete from reposongs_song where id=? @
//delete from reposongs_song where id=?
//delete from reposongs_song where id=?

@ SQL DELETE commands are issues one at a time for each ID
The JpaRepository.deleteInBatch(collection) will issue a single DELETE SQL statement with all IDs

expressed in the where clause.

songsRepository.deleteInBatch(savedSongs);
//delete from reposongs_song where id=? or id=? or id=? @

@ one SQL DELETE command is issued for all IDs

12.4. JPA References

JPA has the notion of references that represent a promise to an @Entity in the database. This is
normally done to make loading targeted objects from the database faster and leaving related
objects to be accessed only on-demand.

In the following examples, the code is demonstrating how it can form a reference to a persisted
object in the database — without going through the overhead of realizing that object.

12.4.1. Reference Exists

In this first example, the referenced object exists and the transaction stays open from the time the
reference is created — until the reference was resolved.

Able to Obtain Object through Reference within Active Transaction

void ref_session() {

//when - obtaining a reference with a session

Song dbSongRef = songsRepository.getReferenceById(song.getId()); @
//then

then(dbSongRef).1isNotNull();

35

then(dbSongRef.getId()).isEqualTo(song.getId()); @
then(dbSongRef.getTitle()).isEqualTo(song.getTitle()); ®

@ returns only a reference to the @Entity — without loading from the database
@ still only dealing with the unresolved reference up and to this point

® actual object resolved from the database at this point

12.4.2. Reference Session Inactive

The following example shows that a reference can only be resolved during its initial transaction.
We are able to perform some light commands that can be answered directly from the reference, but
as soon as we attempt to access data that would require querying the database — it fails.

Unable to Obtain Object through Reference Outside of Transaction

import org.hibernate.lLazyInitializationException;

void ref_no_session() {

//when - obtaining a reference without a session
Song dbSongRef = songsRepository.getReferenceById(song.getId()); @
//then - get a reference with basics
then(dbSongRef).isNotNull();
then(dbSongRef.getId()).isEqualTo(song.getId()); @
assertThatThrownBy(
() -> dbSongRef.getTitle()) ®
.isInstanceOf(LazyInitializationException.class);

@ returns only a reference to the @Entity from original transaction

@ still only dealing with the unresolved reference up and to this point
® actual object resolution attempted at this point — fails

12.4.3. Bogus Reference

The following example shows that the reference is never attempted to be resolved until something
is necessary from the object it represents — beyond its primary key.

Reference Never Resolved until Demand

import jakarta.persistence.EntityNotFoundException;

void ref_not_exist() {
//given

36

int doesNotExist=1234;
//when
Song dbSongRef = songsRepository.getReferenceById(doesNotExist); @
//then - get a reference with basics
then(dbSongRef).isNotNull();
then(dbSongRef.getId()).isEqualTo(doesNotExist); @
assertThatThrownBy(
() -> dbSongRef.getTitle()) ®
.isInstanceOf(EntityNotFoundException.class);

@ returns only a reference to the @Entity with an ID not in database
@ still only dealing with the unresolved reference up and to this point

® actual object resolution attempted at this point — fails

37

Chapter 13. Custom Queries

Sooner or later, a repository action requires some complexity beyond the ability to leverage a single
query-by-example, derived query, or even JPA-QL. We may need to implement some custom logic or
may want to encapsulate multiple calls within a single method.

13.1. Custom Query Interface

The following example shows how we can extend the repository interface to implement custom
calls using the JPA EntityManager and the other repository methods. Our custom implementation
will return a random Song from the database.

Interface for Public Custom Query Methods

public interface SongsRepositoryCustom {
Optional<Song> random();

}

13.2. Repository Extends Custom Query Interface

We then declare the repository to extend the additional custom query interface — making the new
method(s) available to callers of the repository.

Repository Implements Custom Query Interface

public interface SongsRepository extends JpaRepository<Song, Integer>,
SongsRepositoryCustom { @

@ added additional SongRepositoryCustom interface for SongRepository to extend

13.3. Custom Query Method Implementation

Of course, the new interface will need an implementation. This will require at least two lower-level
database calls

1. determine how many objects there are in the database

2. return a random instance for one of those values

The following snippet shows a portion of the custom method implementation. Note that two
additional helper methods are required. We will address them in a moment. By default, this class
must have the same name as the interface, followed by "Impl".

Custom Query Method Implementation

public class SongsRepositoryCustomImpl implements SongsRepositoryCustom {
private final SecureRandom random = new SecureRandom();

38

public Optional<Song> random() {
Optional randomSong = Optional.empty();
int count = (int) songsRepository.count(); @

if (count!=0) {

int offset = random.nextInt(count);

List<Song> songs = songs(offset, 1); @

randomSong = songs.isEmpty() ? Optional.empty():0Optional.of(songs.qget(2));
}

return randomSong;

@ leverages CrudRepository.count() helper method

@ leverages a local, private helper method to access specific Song

13.4. Repository Implementation Postfix

If you have an alternate suffix pattern other than "Impl" in your application, you can set that value
in an attribute of the @EnableJpaRepositories annotation.

The following shows a declaration that sets the suffix to its normal default value (i.e., we did not
have to do this). If we changed this postfix value from "Impl" to "Xxx", then we would need to
change SongsRepositoryCustomImpl to SongsRepositoryCustomXxx.

Optional Custom Query Method Implementation Suffix
(repositoryImplementationPostfix="Impl") @D

@ Impl is the default value. Configure this attribute to use non-Impl postfix

13.5. Helper Methods

The custom random() method makes use of two helper methods. One is in the CrudRepository
interface and the other directly uses the EntityManager to issue a query.

CrudRepository.count() Used as Helper Method

public interface CrudRepository<T, ID> extends Repository<T, ID> {
long count();

EntityManager NamedQuery used as Helper Method
protected List<Song> songs(int offset, int limit) {

return em.createNamedQuery("Song.songs")
.setFirstResult(offset)

39

.setMaxResults(limit)
.getResultList();

We will need to inject some additional resources to make these calls:

* SongsRepository

* EntityManager

13.6. Naive Injections

We could have attempted to inject a SongsRepository and EntityManager straight into the Impl class.

Possible Injection Option

public class SongsRepositoryCustomImpl implements SongsRepositoryCustom {
private final EntityManager em;
private final SongsRepository songsRepository;

However,

* injecting the EntityManager would functionally work, but would not necessarily be part of the
same Persistence Context and transaction as the rest of the repository

» eagerly injecting the SongsRepository in the Impl class will not work because the Impl class is
now part of the SongsRepository implementation. We have a recursion problem to resolve there.

13.7. Required Injections
We need to instead

* inject a JpaContext and obtain the EntityManager from that context

* use @Autowired @Lazy and a non-final attribute for the SongsRepository injection to indicate that
this instance can be initialized without access to the injected bean

Required Injections

import org.springframework.data.jpa.repository.JpaContext;

public class SongsRepositoryCustomImpl implements SongsRepositoryCustom {
private final EntityManager em; ®
@

private SongsRepository songsRepository;
public SongsRepositoryCustomImpl(JpaContext jpaContext) { @

em=jpaContext.getEntityManagerByManagedType(Song.class);
}

40

@ EntityManager obtained from injected JpaContext
@ SongsRepository lazily injected to mitigate the recursive dependency between the Impl class and

the full repository instance

13.8. Calling Custom Query

With all that in place, we can then call our custom random() method and obtain a sample Song to

work with from the database.

Example Custom Query Client Call

//when
Optional<Song> randomSong = songsRepository.random();

//then
then(randomSong.isPresent()).isTrue();

The following shows the resulting SQL

Custom Random Query Resulting SQL

select count(*) from reposongs_song s1_0
select ...

from reposongs_song s1_0

offset 7 rows fetch first ? rows only

41

Chapter 14. Summary

In this module, we learned:

« that Spring Data JPA eliminates the need to write boilerplate JPA code

* to perform basic CRUD management for @Entity classes using a repository

* to implement query-by-example

* unbounded collections can grow over time and cause our applications to eventually fail
o that paging and sorting can easily be used with repositories

* to implement query methods derived from a query DSL

* to implement custom repository extensions

14.1. Comparing Query Types
Of the query types,

* derived queries and query-by-example are simpler but have their limits
o derived queries are more expressive
o query-by-example can be built flexibly at runtime

> nothing is free—so anything that requires translation between source and JPA form may
incur extra initialization and/or processing time

* JPA-QL and native SQL
o have virtually no limit to what they can express

o cannot be dynamically defined for a repository like query-by-example. You would need to
use the EntityManager directly to do that.

- have loose coupling between the repository method name and the actual function of the
executed query

o can be resolved in an external source file that would allow for query changes without
recompiling

42

	Spring Data JPA Repository
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Spring Data JPA Repository
	Chapter 3. Spring Data Repository Interfaces
	Chapter 4. SongsRepository
	4.1. Song @Entity
	4.2. SongsRepository

	Chapter 5. Configuration
	5.1. Injection

	Chapter 6. CrudRepository
	6.1. CrudRepository save() New
	6.2. CrudRepository save() Update Existing
	6.3. CrudRepository save()/Update Resulting SQL
	6.4. New Entity?
	6.5. CrudRepository existsById()
	6.6. CrudRepository findById()
	6.7. CrudRepository delete()
	6.8. CrudRepository deleteById()
	6.9. Other CrudRepository Methods

	Chapter 7. PagingAndSortingRepository
	7.1. Sorting
	7.2. Paging
	7.3. Page Result
	7.4. Slice Properties
	7.5. Page Properties
	7.6. Stateful Pageable Creation
	7.7. Page Iteration

	Chapter 8. Query By Example
	8.1. Example Object
	8.2. findAll By Example
	8.3. Primitive Types are Non-Null
	8.4. matchingAny ExampleMatcher
	8.5. Ignoring Properties
	8.6. Contains ExampleMatcher

	Chapter 9. Derived Queries
	9.1. Single Field Exact Match Example
	9.2. Query Keywords
	9.3. Other Keywords
	9.4. Multiple Fields
	9.5. Collection Response Query Example
	9.6. Slice Response Query Example
	9.7. Page Response Query Example

	Chapter 10. JPA-QL Named Queries
	10.1. Mapping @NamedQueries to Repository Methods

	Chapter 11. @Query Annotation Queries
	11.1. @Query Annotation Native Queries
	11.2. @Query Sort and Paging

	Chapter 12. JpaRepository Methods
	12.1. JpaRepository Type Extensions
	12.2. JpaRepository flush()
	12.3. JpaRepository deleteInBatch
	12.4. JPA References

	Chapter 13. Custom Queries
	13.1. Custom Query Interface
	13.2. Repository Extends Custom Query Interface
	13.3. Custom Query Method Implementation
	13.4. Repository Implementation Postfix
	13.5. Helper Methods
	13.6. Naive Injections
	13.7. Required Injections
	13.8. Calling Custom Query

	Chapter 14. Summary
	14.1. Comparing Query Types

