
Docker Integration Testing
jim stafford

Fall 2024 v2024-01-13: Built: 2024-11-19 21:39 EST

Table of Contents
1. Introduction. 1

1.1. Goals. 1

1.2. Objectives . 1

2. Disable Spring Boot Plugin Start/Stop . 2

3. Docker Maven Plugin . 3

3.1. Executions . 3

3.2. Configuring with Properties. 4

3.3. Configuration Properties. 5

4. Concurrent Testing. 7

5. Non-local Docker Host. 8

5.1. Linux Work-around . 10

5.2. Failsafe . 10

5.3. Resolving docker.hostname . 11

5.4. Example Output . 13

6. Summary . 14

Chapter 1. Introduction
We have just seen how we can package our application within a Docker image and run the image in
a container. It is highly likely that the applications you develop will be deployed in production
within a Docker container and you will want to test the overall packaging. Before we add any
external resource dependencies, I want to cover how we can automate the build and execution to
perform a heavy-weight Maven Failsafe integration test against this image versus the Spring Boot
executable JAR alone. The purpose of this could be to automate a test of how you are defining and
building your Docker image with the application — as close as deployment as possible.

One unique aspect at the end of this lecture is coverage of developing a test to operate within a
Docker-based CI/CD environment. Running a test within your native environment where localhost
(relative to the IT test) is also the Docker host (where containers are running) is one thing.
However, CI/CD test environments commonly run builds within Docker containers where localhost
is not the Docker host. We must be aware of and account for that.

1.1. Goals
You will learn:

• to automate the build of a Docker image within a module

• to implement a heavyweight Maven Failsafe integration test of that Docker image

• to implement a Docker integration test that can run concurrently with other tests of the same
module on the same Docker host

• to implement a Docker integration test that can run outside of and within a Docker-based CI/CD
environment

1.2. Objectives
At the conclusion of this lecture and related exercises, you will be able to:

1. configure a Maven pom to automatically build a Docker image using a Dockerfile

2. configure a Maven pom to automatically manage the start and stop of that Docker image during
a Maven integration test

3. configure a Maven pom to uniquely allocate and/or name resources so that concurrent tests can
be run on the same Docker host

4. identify the hostname of the Docker host running the Docker containers

5. configure a Docker container and IT test to communicate with a variable Docker host

1

Chapter 2. Disable Spring Boot Plugin
Start/Stop
In a previous lecture, we introduced the Maven it profile and how to structure it so that it would
activate the Maven integration test infrastructure we needed to test a standalone Spring Boot
application with a dynamically assigned server port#. In this lecture, we are using a Docker image
versus a Spring Boot executable JAR. Everything else is still the same, so we would like to make use
of the Maven it profile but turn off the start/stop of the Spring Boot executable — and start/stop our
Docker container instead.

it Profile Activation Trigger

src/test/resources
|-- application-it.properties ①
...

① triggers activation of it profile

We will need to disable the start/stop of the native Spring Boot executable JAR, because we cannot
have that process and our Docker container allocating the same port number for the test. To disable
the start/ stop of the Spring Boot executable JAR and allow the Docker container to be the target of
the test, we can add a few properties to cause the plugin to "skip" those goals.

Disable Spring Boot Plugin run/stop

<properties>
 <!-- turn off launch of unwrapped Spring Boot server during integration-test;
using Docker instead -->
 <spring-boot.run.skip>true</spring-boot.run.skip> ①
 <spring-boot.stop.skip>true</spring-boot.stop.skip> ②

① property triggers Spring Boot Maven plugin to skip the start goal and leave the
${server.http.port} unallocated

② property triggers Spring Boot Maven plugin to skip the unnecessary stop goal

If we stopped there, the ${server.http.port} port would still be identified and our IT test would be
executed by failsafe and fail because we have no server yet listening on the test port.

IT Connection Error

[ERROR] Errors:
[ERROR] DockerHelloIT.can_authenticate_with_server:59 » ResourceAccess I/O error on
GET request for "http://localhost:59416/api/hello": Connection refused
[ERROR] DockerHelloIT.can_contact_server:46 » ResourceAccess I/O error on GET
request for "http://localhost:59416/api/hello": Connection refused

Lets work on building and managing the execution of the Docker image.

2

https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/#run.run-goal.parameter-details.skip
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/#integration-tests.stop-goal.parameter-details.skip

Chapter 3. Docker Maven Plugin
A google search will come up with several Maven plugins designed to manage the building and
execution of a Docker image. However, many of them are end-of-life and no longer maintained. I
found one (io.fabric8:docker-maven-plugin) in 2024 that has current activity and the features we
need to accomplish our goals.

The following snippet shows the outer shell of the Docker Maven Plugin. We have 2 to 3 ways to fill
in the configuration details: XML, properties, and a combination of both. Both will require defining
portions of the image element of configuration.images.

io.fabric8:docker-maven-plugin Outer Shell

<properties>
...
</properties>

<build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration> ①
 <images>
 
 </images>
 </configuration>
 <executions> ②
 ...
 </executions>
 </plugin>
...

① defines how to build the image and run the image’s container

② defines which plugin goals will be applied to the build

3.1. Executions
We can first enable the goals we need for the Docker Maven Plugin. The start and stop goals
automatically associate themselves with the pre/post-integration-test phases. I have assigned the
building of the Docker image to the package build phase, which fires just before pre-integration-
test.

Enable Docker Maven Plugin Goals

<build>
 <plugins>

3

https://github.com/fabric8io/shootout-docker-maven?tab=readme-ov-file
https://github.com/fabric8io/docker-maven-plugin
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#default-lifecycle

 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 ...
 <executions>
 <execution>
 <id>build-image</id>
 <phase>package</phase> ①
 <goals>
 <goal>build</goal>
 </goals>
 </execution>
 <execution>
 <id>start-container</id>
 <goals> ②
 <goal>start</goal>
 </goals>
 </execution>
 <execution>
 <id>stop-container</id>
 <goals> ③
 <goal>stop</goal>
 </goals>
 </execution>

① build goal must be manually bound to the package phase

② start goal is automatically bound to the pre-integration phase

③ stop goal is automatically bound to the post-integration phase

If we stopped here, we would have the Docker Maven Plugin activating the build, start, and stop
goals when we need them, but without any configuration — they will do nothing but activate when
we configured them to.

Docker Maven Plugin Goals Activating

[INFO] --- docker-maven-plugin:0.43.4:build (build-image) @ docker-hello-example ---
...
[INFO] --- docker-maven-plugin:0.43.4:start (start-container) @ docker-hello-example

...
[INFO] --- docker-maven-plugin:0.43.4:stop (stop-container) @ docker-hello-example ---

3.2. Configuring with Properties
The Docker Maven Plugin XML configuration approach is more expressive, but the properties
approach is more concise. I will be using the properties approach to take advantage of the more
concise definition. We can use the plugin-default property names that start with docker. However, I
want to highlight which properties are for my docker plugin configuration and will use a my.docker

4

prefix as show in the snippet below.

Configure Use of Property Overrides

<properties>
 <!-- configure the fabric8:docker plugin using properties-->
 <my.docker.verbose>true</my.docker.verbose> ②

...
<build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration>
 <images>
 <image>
 <external>
 <type>properties</type> ①
 <prefix>my.docker</prefix>
 <mode>override</mode>
 </external>

① plugin uses default property prefix docker. Overriding with custom my.docker prefix

② supplying an example my.docker property override

3.3. Configuration Properties
The first few properties are pretty straight forward:

(my.docker.)dockerFile

the path of the Dockerfile used to build the image. One can alternately define the all the build
details within the XML elements of the image element if desired — but I want to stay consistent
with using the Dockerfile.

(my.docker.)name

the full name:tag of the Docker image built and stored in the repository

(my.docker.)ports.api.port

external:internal port mappings that will allow us to map the internal Spring Boot 8080 port to a
randomly selected external port accessible by the IT test

(my.docker.)wait.url

URL to wait for before considering the image in a running state and turning control back to the
Maven lifecycle to transition from pre-integration-test to integration-test

• server.http.port was generated by the Build Helper Maven Plugin

• ejava-parent.docker.hostname will be discussed shortly. It names the Docker host, which

5

will be localhost for most development environments and different for CI/CD builds.

Example Configuration Properties

<properties>
 ...
 <my.docker.dockerFile>
${basedir}/Dockerfile.${docker.imageTag}</my.docker.dockerFile> ①
 <my.docker.name>${project.artifactId}:${docker.imageTag}</my.docker.name>
 <my.docker.ports.api.port>${server.http.port}:8080</my.docker.ports.api.port>
 <my.docker.wait.url>http://${ejava-
parent.docker.hostname}:${server.http.port}/api/hello?name=jim</my.docker.wait.url> ②

① docker.imageTag (2 values: execjar and layered) helps reference specific Dockerfile

② ejava-parent.docker.hostname Maven property definition will be shown later in this lecture. You
can just think localhost for now.

6

Chapter 4. Concurrent Testing
Without additional configuration, each running instance will have a basename of the artifactId and
a one-up number incremented locally, starting with 1. That means that two builds running this test
and using the same Docker host could collide when using the docker-hello-example-1 name.

Default Name Pattern

IMAGE PORTS NAMES
docker-hello-example:execjar 0.0.0.0:52007->8080/tcp docker-hello-example-1

To override this behavior, we can assign a containerNamingPattern to include a random number.
Once we are setting the containerNamingPattern, we need to explicitly set the image alias. I am
assigning it to the same artifactId value we saw earlier.

Plugin with Container Name Configuration

<build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration>
 <containerNamePattern>%a-%t</containerNamePattern> ②
 <images>
 <alias>${project.artifactId}</alias> ①
 <image>
 <external>
 ...

① define an alias that will be used to reference the Docker image

② define a container name pattern that will be used to track running container(s) of the image

With the above configuration, we can have a randomly unique name generated that still makes
some sense to us when we see it in the Docker host status.

Configured Name Pattern

IMAGE PORTS NAMES
docker-hello-example:execjar 0.0.0.0:52913->8080/tcp docker-hello-example-
1705249438850 ①

① random number has been assigned to artifactId to make container name unique (required)
within the Docker host

7

Chapter 5. Non-local Docker Host
For cases where we are running CI/CD builds within a Docker container, we will not have a local
Docker host accessible via localhost. That means that if our IT test uses "http://localhost:…", it will
not locate the server. To do so would require running Docker within Docker (termed
"DinD") — which is not a popular setting due to elevated permissions required for the CI/CD image.
Instead, special settings will be applied to the CI/CD container to identify the non-local location of
the Docker host (termed "wormhole pattern"). The server is running on the Docker host as a sibling
of the CI/CD build image. The IT test and my.docker.wait.url need to reference that non-localhost
value.

Figure 1. IT Test Running Locally in Native
Environment

Figure 2. IT Test Running within CI/CD Docker
Image

• IT Test running native on Docker host
(localhost == Docker host)

• Spring Boot Docker image server.http.port
is exposed on the Docker host

• IT Test locates Docker host using localhost

• IT Test and Spring Boot server running
within sibling Docker images (localhost !=
Docker host)

• Spring Boot Docker image server.http.port
is exposed on the Docker host

• IT test localhost is now within its local CI/CD
Docker image and will fail to find the server
running in the sibling Docker image

8

https://medium.com/@gopesh3652/running-docker-in-docker-dind-a-comprehensive-guide-1fe2e328020
https://java.testcontainers.org/supported_docker_environment/continuous_integration/dind_patterns/

Tim van Baarsen wrote a nice explanation of
our problem/solution in an article. He states that
both Windows and MacOS-based Docker
installations inherently have a
host.docker.internal hostname added to images
(that does not show up in /etc/hosts).

Any container launched by the Docker host will
have its exposed port(s) available on the Docker
host and referenced by docker.host.internal.

• IT Test and Spring Boot server running
within sibling Docker images (localhost !=
Docker host)

• Spring Boot Docker image server.http.port
is exposed on the Docker host

• IT test uses docker.host.internal to locate
Docker host (docker.host.internal == Docker
host)

Figure 3. CI/CD Docker Image Configured with
Docker Host Address

The following snippet shows that even though docker.host.internal is not exposed in the /etc/hosts
file, a ping command is able to resolve host.docker.internal to an IP address. This command was
run on MacOS.

Resolving host.docker.internal

$ docker run --rm mbentley/healthbomb grep -c host.docker.internal /etc/hosts
0 ①

$ docker run --rm mbentley/healthbomb ping host.docker.internal
PING host.docker.internal (192.168.65.254): 56 data bytes ②

① running image on MacOS, the host.docker.internal name does not show in /etc/hosts

② using an image with ping command, we can show that host.docker.internal is resolvable

The following snippet shows a curl command resolving the host.docker.internal name to the
Docker host where our test image is running. The curl command successfully reaches our
server — which again — is not running on localhost relative the to curl command/client. Curl, in the
case is simulating the conditions of the IT test.

Client Completes Call Using Special Hostname

$ docker run --rm -p 8080:8080 docker-hello-example:execjar ①
or
$ mvn docker:run -Dserver.http.port=8080 ②
...
IMAGE PORTS NAMES
docker-hello-example:execjar 0.0.0.0:8080->8080/tcp thirsty_bose

9

https://medium.com/@TimvanBaarsen/how-to-connect-to-the-docker-host-from-inside-a-docker-container-112b4c71bc66
https://medium.com/@TimvanBaarsen/how-to-connect-to-the-docker-host-from-inside-a-docker-container-112b4c71bc66

...
$ docker run --rm curlimages/curl curl
http://host.docker.internal:8080/api/hello?name=jim ③
hello, jim

① start Docker container using raw Docker command (listening on port 8080 on Docker host)

② start Docker container using Maven plugin (listening on port 8080 on Docker host)

③ Curl client running within sibling Docker image (localhost != Docker host; host.docker.internal
== Docker host)

5.1. Linux Work-around
As Tim van Baarsen points out, the automatic feature provided by Docker Desktop on Windows and
MacOs is not automatically provided within Linux installations. We can manually configure the
execution to define a hostname with the value of the network between the Docker host and
container(s) — obtained by resolving host-gateway. host-gateway is set to the IP address of the
gateway put in place between the container and the Docker host.

Manually Adding host.docker.internal Using host-gateway Thru Docker Command

$ docker run --rm --add-host=host.docker.internal:host-gateway curlimages/curl grep
host.docker.internal /etc/hosts ①

192.168.65.254 host.docker.internal

① command line --add-host=host.docker.internal:host-gateway maps the host.docker.internal
hostname to the network between the container and Docker host

The docker-compose.yml file provided in the root of the example source tree supplies that value
using the extra_hosts element.

Manually Adding host.docker.internal Using host-gateway Thru Docker Compose File

extra_hosts:
 - host.docker.internal:host-gateway

With the add-host/extra_hosts configured, we are able to resolve the Docker host in Windows,
MacOS, and Linux environments.

5.2. Failsafe
Our IT test will need to know the Spring Boot server’s hostname in order to properly resolve. We
can configure the server’s hostname using the it.server.host Spring Boot property in the IT test
using Failsafe configuration.


it.server Properties Mapped to ServerConfig

Remember that it.server properties are mapped to the ServerConfig

10

https://www.vinnie.work/blog/2022-12-15-docker-localhost#host-gateway

@ConfigurationProperties instance for IT tests. This is a product of the ejava
libraries, enabled by Spring Boot but not part of Spring Boot

The Spring Boot property can be added to the Failsafe configuration by appending to the
systemPropertyVariables. The snippet below shows the child pom appending new properties to the
parent definition (which supplied it.server.port). The options are to:

• combine.children="append" - add child values to parent-provided values

• combine.self="override" - replace parent-provided values with child values

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <executions>
 <execution>
 <id>integration-test</id>
 <configuration> <!-- account for CD/CD environment when server will not be
localhost -->
 <systemPropertyVariables combine.children="append">
 <it.server.host>${ejava-parent.docker.hostname}</it.server.host>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
</plugin>

5.3. Resolving docker.hostname
We have all configurations referencing ${ejava-parent.docker.hostname}. We now need to make
sure this value is either set to host.docker.internal (within Docker) or localhost (within native
environment) depending on our runtime environment.

To make this decision, I am leveraging the fact that we control the CI/CD Docker image and have
knowledge of an environment variable called TESTCONTAINERS_HOST_OVERRIDE that exists to guide
another Docker-based test tool. For this example, it does not matter what we call it as long as we
know what to look for.

Root-level docker-compose.yml

environment:
 - TESTCONTAINERS_HOST_OVERRIDE=host.docker.internal ①
extra_hosts:
 - host.docker.internal:host-gateway ②

① explicitly setting a well-known environment variable within CI/CD environment

② explicitly defining host.docker.internal for all CI/CD environments

We can use the presence or absence of the TESTCONTAINERS_HOST_OVERRIDE environment variable to

11

https://maven.apache.org/pom.html#plugins

provide a value for an ejava-parent.docker.hostname Maven build property.

Inside CI/CD Docker image

host.docker.internal

Outside CI/CD Docker image / Native Environment

localhost

<profile> <!-- build is running within Docker-based CI/CD via root level docker-
compose.yml -->
 <id>wormhole-build</id>
 <activation>
 <property>
 <name>env.TESTCONTAINERS_HOST_OVERRIDE</name> ①
 </property>
 </activation>
 <properties> <!-- this hostname is mapped to "host-gateway", used by
testcontainers, but generically usable -->
 <ejava-parent.docker.hostname>${env.TESTCONTAINERS_HOST_OVERRIDE}</ejava-
parent.docker.hostname> ②
 </properties>
</profile>
<profile> <!-- build is running outside of Docker/root-level docker-compose.yml -->
 <id>native-build</id>
 <activation>
 <property>
 <name>!env.TESTCONTAINERS_HOST_OVERRIDE</name> ③
 </property>
 </activation>
 <properties> <!-- localhost outside of Docker CI/CD -->
 <ejava-parent.docker.hostname>localhost</ejava-parent.docker.hostname>④
 </properties>
</profile>

① we know out CI/CD container will have TESTCONTAINERS_HOST_OVERRIDE defined in all cases

② in our CI/CD container, environment variable TESTCONTAINERS_HOST_OVERRIDE will resolve to
host.docker.internal

③ we assume the lack of TESTCONTAINERS_HOST_OVERRIDE means we are in native environment

④ in native environment, Docker containers should be accessible via localhost in normal cases



We have the option to use the docker.host.address property supplied by Docker
Maven Plugin for cases when Docker host is truly remote and localhost is not
correct. However, I wanted to keep this part simple and independent of the Docker
Maven Plugin.

12

5.4. Example Output
With everything setup, we can now run our IT test against the Docker image. The Docker Compose
file used in this example is at the root of the class examples tree. It hosts the ability to run Maven
commands within a Docker container. We will discuss Docker Compose in a follow-on lecture.

• running locally in the native environment

Maven/IT Test Running in Native Environment

$ env | grep -c TESTCONTAINERS_HOST_OVERRIDE
0 ①

$ mvn clean verify -DitOnly
...
DockerHelloIT#init:34 baseUrl=http://localhost:54132 ②
RestTemplate#debug:127 HTTP GET http://localhost:54132/api/hello?name=jim
...
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

① TESTCONTAINERS_HOST_OVERRIDE system property is not present

② host defaults to localhost

• running within the CI/CD Docker image

Maven/IT Test Running within Docker CI/CD Environment

$ docker-compose -f ../../../docker-compose.yml run --rm mvn env | grep
TESTCONTAINERS_HOST_OVERRIDE
TESTCONTAINERS_HOST_OVERRIDE=host.docker.internal ①

$ docker-compose -f ../../../docker-compose.yml run --rm mvn mvn clean verify
-DitOnly
...
DockerHelloIT#init:34 baseUrl=http://host.docker.internal:35423 ②
RestTemplate#debug:127 HTTP GET
http://host.docker.internal:35423/api/hello?name=jim
...
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

① TESTCONTAINERS_HOST_OVERRIDE system property is present

② host is assigned to value of TESTCONTAINERS_HOST_OVERRIDE — host.docker.internal

13

https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/docker-compose.yml?ref_type=heads

Chapter 6. Summary
In this module, we learned:

• to automate the build of a Docker image within a module using a Maven plugin

• to implement a heavyweight integration test of that Docker image using the integration goals of
a Docker plugin

• to address some singleton matters when running the Docker images simultaneously on the
same Docker host.

• to configure a Docker image to communicate with another Docker image running on the same
non-local Docker host. This is something common in CI/CD environments.

14

	Docker Integration Testing
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Disable Spring Boot Plugin Start/Stop
	Chapter 3. Docker Maven Plugin
	3.1. Executions
	3.2. Configuring with Properties
	3.3. Configuration Properties

	Chapter 4. Concurrent Testing
	Chapter 5. Non-local Docker Host
	5.1. Linux Work-around
	5.2. Failsafe
	5.3. Resolving docker.hostname
	5.4. Example Output

	Chapter 6. Summary

