Spring Security Authentication

jim stafford

Fall 2024 v2023-08-12: Built: 2024-11-19 21:34 EST

Table of Contents

1. Introduction

1.1. Goals
1.2. Objectives

2. Configuring Security

2.1. WebSecurityConfigurer and Component-based Approaches
2.2. Core Application Security Configuration

2.3. Ignoring Static Resources

2.4. SecurityFilterChain Matcher

2.5. SecurityFilterChain with Explicit MvcRequestMatcher
2.6. HttpSecurity Builder Methods

2.7. Match Requests

2.8. Authorize Requests

2.9. Authentication

2.10. Header Configuration

2.11. Stateless Session Configuration

3. Configuration Results

3.1. Successful Anonymous Call
3.2. Successful Authenticated Call
3.3. Rejected Unauthenticated Call Attempt

4. Authenticated User

4.1. Inject UserDetails into Call
4.2. Obtain SecurityContext from Holder

5. Swagger BASIC Auth Configuration

5.1. Swagger Authentication Configuration
5.2. Swagger Security Scheme

6. CORS

6.1. Default CORS Support

6.2. Browser and CORS Response

6.3. Enabling CORS

6.4. Constrained CORS

6.5. CORS Server Acceptance

6.6. CORS Server Rejection

6.7. Spring MVC @CrossOrigin Annotation

7. RestTemplate Authentication

7.1. ClientHttpRequestFactory

7.2. Anonymous RestTemplate

7.3. Authenticated RestTemplate

7.4. Authentication Integration Tests with RestTemplate

O© 00 J U1 W N DN = = =

NN NN NDNDNDNDRNDNIDNDNIDR N R R R oR R Rl R, |l |, |l |, | | Rl
© © 0 0 0 & & U1 U1 W K 1 = 00 J J O O O U b b b W NN L O

8. RestClient Authentication
8.1. Anonymous RestClient
8.2. Authenticated RestTemplate
9. Mock MVC Authentication
9.1. MockMvc Anonymous Call
9.2. MockMvc Authenticated Call
9.3. MockMvc does not require SpringBootTest

10. Summary

30
30
30
31
31
32
32
33

Chapter 1. Introduction

In the previous example we accepted all defaults and inspected the filter chain and API responses
to gain an understanding of the Spring Security framework. In this chapter we will begin
customizing the authentication configuration to begin to show how and why this can be
accomplished.

1.1. Goals

You will learn:

* to create a customized security authentication configurations

* to obtain the identity of the current, authenticated user for a request

* to incorporate authentication into integration tests

1.2. Objectives

At the conclusion of this lecture and related exercises, you will be able to:

1.

® N o g ok w N

create multiple, custom authentication filter chains

enable open access to static resources

enable anonymous access to certain URIs

enforce authenticated access to certain URIs

locate the current authenticated user identity

enable Cross-Origin Resource Sharing (CORS) exchanges with browsers
add an authenticated identity to RestTemplate and RestClient clients

add authentication to integration tests

Chapter 2. Configuring Security

To override security defaults and define a customized FilterChainProxy-- we must supply one or
more classes that define our own SecurityFilterChain(s).

2.1. WebSecurityConfigurer and Component-based
Approaches

Spring has provided two ways to do this:

* WebSecurityConfigurer/ WebSecurityConfigurerAdapter - is the legacy, deprecated (Spring
Security 5.7.0-M2; 2022), and later removed (Spring 6) definition class that acts as a modular
factory for security aspects of the application. "' There can be one-to-N WebSecurityConfiqurers
and each can define a SecurityFilterChain and supporting services.

* Component-based configuration - is the modern approach to defining security aspects of the
application. The same types of components are defined with the component-based approach,
but they are instantiated in independent @Bean factories. Any interdependency between the
components is wired up using beans injected into the @Bean factory.

Early versions of Spring were based solely on the WebSecurityConfigurer method. Later versions of
Spring 5 provided support for both. Spring 6 now only supports the Component-based method.
Since you will likely encounter the WebSecurityConfigurer approach for a long while in older
applications, I will provide some coverage of that here. However, the main focus will be the Spring
6 Component-based approach. Refer to older versions of the course examples and notes for more
focused coverage of the WebSecurityConfigurer approach.

To highlight that the FilterChainProxy is populated with a prioritized list of SecurityFilterChain—I
am going to purposely create multiple chains.

» one with the API rules (APIConfiguration) - highest priority

» one with the former default rules (AltConfiguration) - lowest priority

* one with access rules for Swagger (SwaggerSecurity) - medium priority
The priority indicates the order in which they will be processed and will also influence the order

for the SecurityFilterChain s they produce. Normally I would not highlight Swagger in these
examples —but it provides an additional example of how we can customize Spring Security.

https://docs.spring.io/spring-security/site/docs/5.8.x/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
https://spring.io/blog/2022/02/21/spring-security-without-the-websecurityconfigureradapter

Spring Security <= 5 web configuration h. @WebSecu Y onﬁ'gurerl
L

‘ Spring Security == 6 web configuration Bi

Order 0) APIConfiguration

Wil

‘@WebSecuritycanﬁgurerAdapter

«SecurityFilterChain»
1) AP SecurityFilterChain

«SecurityFilterChain»
0) Static Resources SecurityFilterChain

requestMatcher

requestMatcher

Application Filter Chain

DelegatingFilterProxy

I
Component-based approach\

«@Configuration»

©SecurityFiIterChain|

@Websacuritycusmmizer
?

g

1 g 1

FilterChainProxy
|

Order 100Q) AltConfiguration

order loﬁ}\iwagger Configuration\

«SecurityFilterChain»
3) Alt SecurityFilterChain
requestMatcher
1 4

«SecurityFilterChain»
4) Swagger SecurityFilterChain
requestMatcher

4 0 b 1 [

Resource I

Figure 1. Multiple SecurityFilterChains

2.2. Core Application Security Configuration

The example will eventually contain several SecurityFilterChains, but let’s start with focusing on
just one of them —the "API Configuration". This initial configuration will define the configuration
for access to static resources, dynamic resources, and how to authenticate our users.

2.2.1. WebSecurityConfigurerAdapter Approach

In the legacy WebSecurityConfiguration approach, we would start by defining a @Configuration class
that extends WebSecurityConfigurerAdapter and overrides one or more of its configuration methods.

A

Legacy WebSecurityConfigurer no Longer EXists

Reminder - the legacy WebSecurityConfigurer approach does not exist in Spring
Boot 3 / Spring Security 6. It is included here as an aid for those that may be
transitioning from a legacy baseline.

WebSecurityConfigurer Approach
(proxyBeanMethods = false)
(0) @
public class APIConfiguration extends WebSecurityConfigurerAdapter { @
public void configure(WebSecurity web) throws Exception { ... } ®

protected void configure(HttpSecurity http) throws Exception { ... } @

protected void configure(AuthenticationManagerBuilder auth) throws Exception { ...

}®

public AuthenticationManager authenticationManagerBean() throws Exception { ... }

®

@ Create @Configuration class that extends WebSecurityConfigurerAdapter to customize
SecurityFilterChain

@ APIConfiguration has a high priority resulting SecurityFilterChain for dynamic resources
® configure a SecurityFilterChain for static web resources

@ configure a SecurityFilterChain for dynamic web resources

® optionally configure an AuthenticationManager for multiple authentication sources

® optionally expose AuthenticationManager as an injectable bean for re-use in other
SecurityFilterChains

Each SecurityFilterChain would have a reference to its AuthenticationManager. The
WebSecurityConfigurerAdapter provided the chance to custom configure the AuthenticationManager
using a builder.

The adapter also provided an accessor method that exposed the built AuthenticationManager as a
pre-built component for other SecurityFilterChains to reference.

2.2.2. Component-based Approach

In the modern Component-based approach, we define each aspect of our security infrastructure as
a separate component. These @Bean factory methods are within a normal @Configuration class that
requires no inheritance. The names of the @Bean factory methods have no significance as long as
they are unique. Only what they return has significance.

Component-based Approach

import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.WebSecurityCustomizer

I

import org.springframework.security.web.SecurityFilterChain;

public WebSecurityCustomizer apiStaticResources() { ... } @

(Ordered.HIGHEST_PRECEDENCE) //0 ®
public SecurityFilterChain apiSecurityFilterChain(HttpSecurity http) throws Exception

{...}1 @

public AuthenticationManager authnManager(HttpSecurity http, ...) throws Exception {

®
AuthenticationManagerBuilder builder = http @
.getSharedObject(AuthenticationManagerBuilder.class);

.}

@ define a bean to configure a SecurityFilterChain for static web resources

@ define a bean to configure a SecurityFilterChain for dynamic web resources

® high priority assigned to SecurityFilterChain

@ optionally configure an AuthenticationManager for multiple authentication sources

® expose AuthenticationManager as an injectable bean for use in SecurityFilterChains

The SecurityFilterChain for static resources gets defined within a lambda function implementing
the WebSecurityCustomizer interface. The SecurityFilterChain for dynamic resources gets directly
defined by within the @Bean factory method.

There is no longer any direct linkage between the configuration of the AuthenticationManager and
the SecurityFilterChains being built. The linkage is provided through a getSharedObject call of the
HttpSecurity object that can be injected into the bean methods.

2.3. Ignoring Static Resources

One of the easiest rules to put into place is to provide open access to static content. This is normally
image files, web CSS files, etc. Spring recommends not including dynamic content in this list. Keep
it limited to static files.

Access is defined by configuring the WebSecurity object.

* In the legacy WebSecurityConfigurerAdapter approach, the modification was performed within
the method overriding the configure(WebSecurity) method. Note that Spring 5 WebSecurity
interface contained builder methods for RequestMatcher (e.g., antMatchers()) that no longer exist.

Ignore Static Content Configuration - Legacy WebSecurityConfigurerAdapter approach

import org.springframework.security.config.annotation.web.builders.WebSecurity;

(0)
public class APIConfiguration extends WebSecurityConfigurerAdapter {

public void configure(WebSecurity web) throws Exception {
web.ignoring().antMatchers("/content/**");

}

* In the modern Component-based approach, a lambda function implementing the
WebSecurityCustomizer functional interface is returned. That lambda will be called to customize
the WebSecurity object. Spring 6 made a breaking change to the WebSecurity interface by
removing the approach-specific builders for matchers (e.g., antMatchers()) and generalized the
call to requestMatchers(). Under the hood, by default, Spring will create a matcher that best
suites the runtime environment—which will be MvcRequestMatcher in Spring MVC
environments.

Ignore Static Content Configuration - Modern Component-based approach

import
org.springframework.security.config.annotation.web.configuration.WebSecurityCustomi
zer;

public WebSecurityCustomizer apiStaticResources() {
return (web)->web.ignoring().requestMatchers("/content/**"); @®

}

@ delegating to Spring to create the correct matcher

WebSecurityCustomers Functional Interface

public interface WebSecurityCustomizer {
void customize(WebSecurity web);

}
MvcRequestMatcher is used by Spring MVC to implement URI matching based on the
actual URIs hosted within Spring MVC. The expression is still an Ant expression. It
(r) is just performed using more knowledge of the hosted resources within Spring
- MVC. The MvcRequestMatcher implementation is said to be less prone to definition

error when using Spring MVC. Spring will revert to AntRequestMatcher when
running in alternate Servlet environments (e.g., JAX-RS).

The generic requestMatchers() approach did not work when the application

A contained a blend of Spring MVC and non-Spring MVC (e.g., H2 Database UI)
servlets. In those cases, we has to use an explicit approach documented in CVE-
2023-34035. This has since been fixed.

Remember —our static content is packaged within the application by placing it under the
src/main/resources/static directory of the source tree.

Static Content

$ tree src/main/resources/

src/main/resources/
|-- application.properties
‘-- static
‘-~ content
|-- hello.js

|-- hello_static.txt

‘-~ index.html
$ cat src/main/resources/static/content/hello_static.txt
Hello, static file

With that rule in place, we can now access our static file without any credentials.

https://spring.io/security/cve-2023-34035
https://spring.io/security/cve-2023-34035

Anonymous Access to Static Content

$

N N N N N N N N N N NV V

curl -v -X GET http://localhost:8080/content/hello_static.txt
GET /content/hello_static.txt HTTP/1.1

HTTP/1.1 200

Vary: Origin

Vary: Access-Control-Request-Method

Vary: Access-Control-Request-Headers
Last-Modified: Fri, 03 Jul 2020 19:36:25 GMT
Cache-Control: no-store

Accept-Ranges: bytes

Content-Type: text/plain

Content-Length: 19

Date: Fri, @03 Jul 2020 20:55:58 GMT

Hello, static file

2.4. SecurityFilterChain Matcher

The meat of the SecurityFilterChain definition is within the configuration of the HttpSecurity

object.

The resulting SecurityFilterChain will have a RequestMatcher that identifies which URIs the
identified rules apply to. The default is to match "any" URIL In the example below I am limiting the
configuration to URIs at and below /api/anonymous and /api/authn. The matchers also allow a

specific HTTP method to be declared in the definition.

In the legacy WebSecurityConfigurerAdapter approach, configuration is performed in the method
overriding the configure(HttpSecurity) method. The legacy HttpSecurity interface provided

builders that directly supported building different types of matchers (e.g., antMatchers()).

SecurityFilterChain Matcher - WebSecurityConfigurerAdapter approach
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
(0)
public class APIConfiguration extends WebSecurityConfiqurerAdapter {
protected void configure(HttpSecurity http) throws Exception {
http.requestMatchers(m->m.antMatchers("/api/anonymous/**","/api/authn/**")

);®
/.. @

@ rules within this configuration will apply to URIs below /api/anonymous and /api/authn

@ http.build() is not called

o This method returns void and the build() method of HttpSecurity should not be
called.

* In the modern Component-based approach, the configuration is performed in a @Bean method
that will directly return the SecurityFilterChain. It has the same HttpSecurity object injected,
but note that build() is called within this method to return a SecurityFilterChain. Spring 6
made a breaking changes to:

o the HttpSecurity interface by changing requestMatchers() to securityMatchers() in order to
better distinguish between the pattern matching (requestMatchers) versus the role of the
pattern matching (securityMatchers). The securityMatchers() method defines the aggregate
RequestMatchers that are used to identify which calls invoke this SecurityFilterChain

o the AbstractRequestMatcherRegistry interface by removing type-specific matcher builders
(e.g., removed antMatchers()) and generalized to requestMatchers()
Component-based HttpSecurity Configuration

(0)
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http.securityMatchers(m->m.requestMatchers("/api/anonymous/**","/api/authn/**"
));®©
//. ..
return http.build(); @

@ rules within this configuration will apply to URIs below /api/anonymous and /api/authn

@ http.build() is required for this @Bean factory

o This method returns the SecurityFilterChain result of calling the build() method
of HttpSecurity. This is different from the deprecated approach.

2.5. SecurityFilterChain with Explicit
MvcRequestMatcher

The following lists the same solution using an explicit MvcRequestMatcher. The MvcRequestMatcher
must be injected as a component because it requires knowledge of the servlet environment.

Component-based HttpSecurity Configuration with Explicit MvcRequestMatcher

import org.springframework.web.servlet.handler.HandlerMappingIntrospector;

MvcRequestMatcher.Builder mve(HandlerMappingIntrospector introspector) {
return new MvcRequestMatcher.Builder(introspector);

}

(Ordered.HIGHEST _PRECEDENCE) //0
public SecurityFilterChain apiSecurityFilterChain(HttpSecurity http,
MvcRequestMatcher.Builder mve) throws Exception {
http.securityMatchers(m->m.requestMatchers(
mvc.pattern("/api/anonymous/**"),
mvc.pattern("/api/authn/**")
));

2.6. HttpSecurity Builder Methods

The HttpSecurity object is "builder-based" and has several options on how it can be called.

* http.methodAcceptingBuilt(builtObject)
* http.methodReturningBuilder().customizeBuilder() (non-lambda)
* http.methodPassingBuilderTolLambda(builder-builder.customizeBuilder())

2.6.1. Deprecated non-Lambda Methods

Spring Security 6 has deprecated the non-lambda customize approach (for removal in Spring
Security 7) in favor of the lambda approach. ! The following non-lambda approach (supplying no
options) will result in a deprecation warning.

Deprecated non-Lambda Customizer Approach

http.httpBasic();

Spring Security has added a Customizer.withDefaults() construct that can mitigate the issue when
supplying no customizations.

Lambda Customization Approach
import org.springframework.security.config.Customizer;

http.httpBasic(Customizer.withDefaults());

2.6.2. Chaining not Necessary
The builders are also designed to be chained. It is quite common to see the following syntax used.

Chained Builder Calls

http.authorizeRequests(cfg->cfqg.anyRequest().authenticated())
.formLogin(Customizer.withDefaults())
.httpBasic(Customizer.withDefaults());

As much as I like chained builders—I am not a fan of that specific syntax when starting out.
Especially if we are experimenting and commenting/uncommenting configuration statements. We
can simply make separate calls. You will see me using separate calls. Either style functionally works
the same.

Separate Builder Calls with Lambdas

http.authorizeRequests(cfg->cfg.anyRequest().authenticated());
http.formLogin(Customizer.withDefaults());
http.httpBasic(Customizer.withDefaults());

2.7. Match Requests

We first want to scope our HttpSecurity configuration commands using one of the securityMatcher
methods. We can provide a RequestMatcher using securityMatcher() or a configurer using
securityMatchers(). The following will create a RequestMatcher that will match any HTTP method
and URI below /api/anonymous and /api/authn. We can add an Http.(METHOD) if we want it to be
specific to only that HTTP method.

Using Default Request Matchers

http.securityMatchers(m->m.requestMatchers("/api/anonymous/**","/api/authn/**")); @
//http.securityMatcher("/api/anonymous/**","/api/authn/**"); @

@ matches all HTTP methods matching the given URI patterns

@ shortcut when no HttpMethod is needed

RequestMatchers can be Aggregated

o The code above technically creates three (3) RequestMatchers. Two (2) to match the
individual (method)/URIs and one (1) parent to aggregate them into an "or"
predicate.

The requestMatchers() configurer (*in non-ambiguous environments) will create an
MvcRequestMatcher under the hood when Spring MVC is present and an AntRequestMatcher for other
servlet frameworks. The MvcRequestMatcher is said to be less prone to error (i.e., missed matches)
than other techniques. Spring 6 took away builder methods to directly create the AntRequestMatcher
(and other explicit types), but they can still be created manually. This technique can be used to
create any type of RequestMatcher.

Using Explicit Request Matchers

import org.springframework.security.web.util.matcher.0OrRequestMatcher;
import org.springframework.security.web.util.matcher.RegexRequestMatcher;

http.securityMatcher(new OrRequestMatcher(®
RegexRequestMatcher.regexMatcher("”/api/anonymous$"),®
RegexRequestMatcher.regexMatcher ("/A/api/anonymous/.*"),
RegexRequestMatcher.regexMatcher ("A/api/authn$"),

10

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/util/matcher/RequestMatcher.html

RegexRequestMatcher.regexMatcher ("/A/api/authn/.*")
));

@ supplying an explicit type of RequestMatcher

@ Spring Security is aggregating the list into an OrRequestMatcher

Notice the requestMatcher is the primary property in the individual chains and the rest of the
configuration is impacting the filters within that chain.

private void doFilterInternal(ServletRequest reguest, ServletResponse response, FilterChain chain) request: RequestFacade@é7é6
throws IOException, ServletException {
FirewalledRequest firewallRequest = this.firewall.getFirewalledRequest((HttpServietRequest) request); reguest: RequestFocac
HttpServletResponse firewallResponse = this.firewall.getFirewalledResponse((HttpServietResponse) response); response: Respo
List<Filter> filters = getFilters(firewallRequest); firewallRequest: "FirewolledRequest[org.opache.catalina.connector.ReqL

1 if (filters == nulUEEEEDD || filters.size() == OEEEEE®) { rilters: I
if (logger.isTraceEnabled()) {
Evaluate expression (=) or add a watch (o)

v this = {FilterChainProxy@67 72} "FilterChainProxy[Filter Chains: [DefaultSecurityFilterChain [RequestMatcher=Mve [pattern='{content/**'], Filters=[]], DefaultSecurityFilterChain [RequestMatche
securityContextHolderStrategy = {ThreadLocalSecurityContextHolderStrategy@6778}
~ f filterChains = {ArrayList@6779} size =4
A 0 = {DefaultSecurityFilterChain@8466) "DefaultSecurityFilterChain [RequestMatcher=Mve [pattern='jcontent/**'], Filters=[]]"
> 'f reguestMatcher = {MvcRequestMatcher@8475} "Mve [pattern="/content/**"]"
% filters = {ArrayList@8476)} size =0
v 1= [DefaultSecurityFilterChain@8467) "DefaultSecurityFilterChain [RequestMatcher=0r [Mvc [pattern='fapifanonymous/**'], Mvc [pattern="[apifauthn/**']], Filters=[org.springframewark.:
“f requestMatcher = {OrRequestiMatcher@8472) "Or [Mvc [pattern="fapifanonymous/**'], Mvc [pattern="{api/authn/**']]"
% filters = {ArrayList@6771} size =13
v 2 = {DefaultSecurityFilterChain@8468)} "DefaultSecurityFilterChain [RequestMatcher=0r [Mvc [pattern='/swagger-ui*'], Mvc [pattern='fswagger-ui/**'], Mvc [pattern='/v3fapi-docs/**']], F
> 'f requestMatcher = {OrRequestMatcher@8478) "Or [Mve [pattern="fswagger-ui*'], Mve [pattern="/swagger-ui/**'], Mvc [pattern='/v3/api-dacs/**']]"
> % filters = {ArrayList@8479)} size =10
v 3 = {DefaultSecurityFilterChain@8469) "DefaultSecurityFilterChain [RequestMatcher=any request, Filters=[org.springframework.security web.session.DisableEncodeUrIFilter@2469alch, «
> 'f reguestMatcher = {AnyRequestMatcher@8481} "any request”
> % filters = {ArrayList@8482} size =10

v
g

VoW

Figure 2. Request Matchers

o Notice also that our initial SecurityFilterChain is within the other chains in the
example and is high in priority because of our @0rder value assignment:

2.8. Authorize Requests

Next I am showing the authentication requirements of the SecurityFilterChain. Calls to the
/api/anonymous URIsS do not require authentication. Calls to the /api/authn URIs do require
authentication.

Defining Authentication Requirements

http.authorizeHttpRequests(cfg->cfg.requestMatchers("/api/anonymous/**").permitAll());
http.authorizeHttpRequests(cfg->cfg.anyRequest().authenticated());

The permissions off the matcher include:

* permitAll() - no constraints
* denyAll() - nothing will be allowed
» authenticated() - only authenticated callers may invoke these URIs

* role restrictions that we won’t be covering just yet

11

You can also make your matcher criteria method-specific by adding in a HttpMethod specification.

Matchers Also Supports HttpMethod Criteria
import org.springframework.http.HttpMethod;

...(cfg->cfg.requestMatchers(HttpMethod.GET,"/api/anonymous/**").permitAl1())
...(cfg->cfg.requestMatchers(HttpMethod.GET).permitA11())

requestMatchers are evaluated after satisfying securityMatcher(s)

O RequestMatchers are evaluated within the context of what satisfied the filter’s
- securityMatcher(s). If you form a Security FilterChain for a specific base URI, the
requestMatcher is only defining rules for what that chain processes.

2.9. Authentication

In this part of the example, I am enabling BASIC Auth and eliminating FORM-based authentication.
For demonstration only — I am providing a custom name for the realm name returned to browsers.

http.httpBasic(cfg->cfg.realmName("AuthConfigExample")); @
http.formLogin(cfg->cfg.disable());

o Realm name is not a requirement to activate Basic Authentication. It is shown here
solely as an example of something easily configured.

Example Realm Header used in Authentication Required Response

< HTTP/1.1 401
< WWW-Authenticate: Basic realm="AuthConfigExample" @

@ Realm Name returned in HTTP responses requiring authentication

2.10. Header Configuration

In this portion of the example, I am turning off two of the headers that were part of the default set:
XSS protection and frame options. There seemed to be some debate on the value of the XSS header !
? and we have no concern about frame restrictions. By disabling them —I am providing an
example of what can be changed.

(SRF protections have also been disabled to make non-safe methods more sane to execute at this
time. Otherwise, we would be required to supply a value in a POST that came from a previous GET
(all maintained and enforced by optional filters).

Header Configuration

http.headers(cfg->{

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/WWW-Authenticate

cfg.xssProtection(xss-> xss.disable());
cfg.frameOptions(fo->fo.disable());

I))g
http.csrf(cfg->cfg.disable());

2.11. Stateless Session Configuration

I have no interest in using the Http Session to maintain identity between calls —so this should
eliminate the SET-COOKIE commands for the JSESSIONID.

Stateless Session Configuration

http.sessionManagement(cfg->
cfg.sessionCreationPolicy(SessionCreationPolicy.STATELESS));

[1] "Spring Security without the WebSecurityConfigurerAdapter", Spring.io, Feb 21, 2022
[2] "Spring Security, Preparing for 7.0, Configuration Methods",Spring.io
[3] "X-XSS-Protection”",MDN Web Docs

13

https://spring.io/blog/2022/02/21/spring-security-without-the-websecurityconfigureradapter
https://docs.spring.io/spring-security/reference/migration-7/configuration.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Chapter 3. Configuration Results

With the above configurations in place —we can demonstrate the desired functionality and trace
the calls through the filter chain if there is an issue.

3.1. Successful Anonymous Call

The following shows a successful anonymous call and the returned headers. Remember that we
have gotten rid of several unwanted features with their headers. The controller method has been
modified to return the identity of the authenticated caller. We will take a look at that later —but
know the source of the additional :caller= string was added for this wave of examples.

Successful Anonymous Call

curl -v -X GET http://localhost:8080/api/anonymous/hello?name=jim
GET /api/anonymous/hello?name=jim HTTP/1.1

HTTP/1.1 200

X-Content-Type-Options: nosniff

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: @

Content-Type: text/plain;charset=UTF-8

Content-Length: 25

Date: Fri, 03 Jul 2020 22:11:11 GMT

N N N N N N N NN VA

hello, jim :caller=(null) @®

@ we have no authenticated user

3.2. Successful Authenticated Call

The following shows a successful authenticated call and the returned headers.

Successful Authenticated Call

curl -v -X GET http://localhost:8080/api/authn/hello?name=jim -u user:password ®
GET /api/authn/hello?name=jim HTTP/1.1

Authorization: BASIC dXNlcjpwYXNzd29yZA==

HTTP/1.1 200

X-Content-Type-Options: nosniff

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: @

Content-Type: text/plain;charset=UTF-8

Content-Length: 23

Date: Fri, @03 Jul 2020 22:12:34 GMT

N N N N N N N N NV VA

hello, jim :caller=user @

14

@ example application configured with username/password of user/password

@ we have an authenticated user

3.3. Rejected Unauthenticated Call Attempt

The following shows a rejection of an anonymous caller attempting to invoke a URI requiring an
authenticated user.

Rejected Unauthenticated Call Attempt

curl -v -X GET http://localhost:8080/api/authn/hello?name=jim @
GET /api/authn/hello?name=jim HTTP/1.1

HTTP/1.1 401

WWW-Authenticate: Basic realm="AuthConfigExample"
X-Content-Type-Options: nosniff

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

Content-Type: application/json

Transfer-Encoding: chunked

Date: Fri, 03 Jul 2020 22:14:20 GMT

N N N N N N N NN NV B

{"timestamp":"2020-07-03722:14:20.816+00:00", "status":401,
"error":"Unauthorized", "message":"Unauthorized","path":"/api/authn/hello"}

@ attempt to make anonymous call to authentication-required URI

15

Chapter 4. Authenticated User

Authenticating the identity of the caller is a big win. We likely will want their identity at some point
during the call.

4.1. Inject UserDetails into Call

One option is to inject the UserDetails containing the username (and authorities) for the caller.
Methods that can be called without authentication will receive the UserDetails if the caller provides
credentials but must protect itself against a null value if actually called anonymously.

Injecting Caller Identity into Controller

import org.springframework.security.core.annotation.AuthenticationPrincipal;
import org.springframework.security.core.userdetails.UserDetails;

public String getHello((name = "name", defaultValue = "you") String name,
UserDetails user) {
" :caller=" + (user==null ? "(null)" : user.getUsername

return "hello, " + name +

0);
}

4.2. Obtain SecurityContext from Holder

The other option is to look up the UserDetails through the SecurityContext stored within the
SecurityContextHolder class. This allows any caller in the call flow to obtain the identity of the caller
at any time.

Obtaining Caller Identity from SecurityContextHolder

import org.springframework.security.core.context.SecurityContextHolder;

public String getHelloAlt((name = "name", defaultValue = "you") String
name) {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

Object principal = null!=authentication ? authentication.getPrincipal() : "(null)

",
r

String username = principal instanceof UserDetails ?
((UserDetails)principal).getUsername() : principal.toString();
return "hello, " + name + " :caller=" + username;

16

Chapter 5. Swagger BASIC Auth
Configuration

Once we enabled default security on our application—we lost the ability to fully utilize the
Swagger page. We did not have to create a separate SecurityFilterChain for just the Swagger
endpoints — but doing so provides some nice modularity and excuse to further demonstrate Spring
Security configurability.

Check Defaults

Spring Boot used to always apply a default filter with authenticated(), denying
access to any URI lacking a matching securityMatcher. Spring Boot 3.3.2 no longer
(r) applies a default filter when one is provided (as we did above)—leaving it
unevaluated, resulting in open access and other defaults. Swagger UI can be
accessed in this setting, but the BASIC authentication within the page is inoperable.
Verify default behavior in addition to the URIs of importance to your application.

I have added a separate security configuration for the OpenAPI and Swagger endpoints.

5.1. Swagger Authentication Configuration

The following configuration allows the OpenAPI and Swagger endpoints to be accessed
anonymously and handle authentication within OpenAPI/Swagger.

» Swagger SecurityFilterChain using the legacy WebSecurityConfigurerAdapter approach

(proxyBeanMethods = false)

(100) @
public class SwaggerSecurity extends WebSecurityConfigurerAdapter {

protected void configure(HttpSecurity http) throws Exception {
http.requestMatchers(cfg->cfg
.antMatchers("/swagger-ui*", "/swagger-ui/**", "/v3/api-docs/**"));
http.authorizeRequests(cfg->cfg.anyRequest().permitAll());
http.csrf().disable();

@ Priority (100) is after core application (0) and prior to default rules (1000)

» Swagger SecurityFilterChain using the modern Component-based approach

(100) @
public SecurityFilterChain swaggerSecurityFilterChain(HttpSecurity http) throws

Exception {
http.securityMatchers(cfg->cfg

17

.requestMatchers("/swagger-ui*", "/swagger-ui/**", "/v3/api-docs/**"));
http.authorizeHttpRequests(cfg->cfg.anyRequest().permitAll());
http.csrf(cfg->cfg.disable());
return http.build();

@ Priority (100) is after core application (0) and prior to default rules (1000)

5.2. Swagger Security Scheme

In order for Swagger to supply a username:password using BASIC Auth, we need to define a
SecurityScheme for Swagger to use. The following bean defines the core object the methods will be
referencing.

Swagger BASIC Auth Security Scheme
package info.ejava.examples.svc.authn;

import io.swagger.v3.o0as.models.Components;

import io.swagger.v3.o0as.models.0penAPI;

import io.swagger.v3.o0as.models.security.SecurityScheme;
import org.springframework.context.annotation.Bean;

public OpenAPI customOpenAPI() {
return new OpenAPI()
.components(new Components()
.addSecuritySchemes("basicAuth",
new SecurityScheme()
.type(SecurityScheme.Type.HTTP)
.scheme("basic")));

The @Operation annotations can now reference the SecuritySchema to inform the SwaggerUI that
BASIC Auth can be used against that specific operation. Notice too, that we needed to make the
injected UserDetails optional —or even better — hidden from OpenAPI/Swagger since it is not part
of the HTTP request.

Swagger Operation BASIC Auth Definition
package info.ejava.examples.svc.authn.authcfg.controllers;

import io.swagger.v3.o0as.annotations.Operation;
import io.swagger.v3.o0as.annotations.Parameter;

public class HelloController {

18

@0peration(description = "sample authenticated GET",
security = @SecurityRequirement(name="basicAuth")) @

@RequestMapping(path="/api/authn/hello",

method= RequestMethod.GET)
public String getHello(

@RequestParam(name="name",defaultValue="you",required=false) String name,

@Parameter(hidden = true) @

@AuthenticationPrincipal UserDetails user) {

return "hello, " + name + " :caller=" + user.getUsername();

@ added @SecurityRequirement to operation to express within OpenAPI that this call accepts Basic
Auth

@ Identified parameter as not applicable to HTTP callers

With the &« C @ localhost:8080/swagger-ui/index.html?config.. @ @ % © # Q © @ G N a :
@SecurityRequirem

ent in place, the

swagger ULl OpenAPI definition @ “2

provides a means | aasapidocs
to supply
username/passwo
rd for subsequent | o
calls. [http:/localhost:8080 - Generated server url v] Authorize g

hello-controller demonstrates sample calls with security constraints %

GET /api/anonymous/hello

POST /api/anonymous/hello

N
/
57| /api/authn/hello /]
|
POST /api/authn/hello {)

/api/alt/hello]
/api/alt/hello \ GX

Figure 3. Swagger with BASIC Auth Configured

19

When making a
call —Swagger Ul
adds the
Authorization
header with the
previously
entered
credentials.

20

/api/authn/hello

sample authenticated GET

Parameters

Name Description

name * required
string
(query)

jim

Cancel

Responses

Curl

Figure 4. Swagger BASIC Auth Call

curl -X eET tpi//lccalhnst :8080/ari/authn/hello?name=jim" -H "accept: */*"
"Authorization: Basic dXNlcjpwYXNzd29yZA=="

Chapter 6. CORS

There is one more important security filter to add to our list before we end, and it is complex
enough to deserve its own section - Cross Origin Resource Sharing (CORS). Using this standard,
browsers will supply the URL of the source of Javascript used to call the server —when coming
from a different host domain — and look for a response from the server that indicates the source is
approved. Without support for CORS, javascript loaded by browsers will not be able to call the API
unless it was loaded from the same base URL as the API. That even includes local development (i.e.,
javascript loaded from file system cannot invoke http://localhost:8080). In today’s modern web
environments — it is common to deploy services independent of Javascript-based UI applications or
to have the UI applications calling multiple services with different base URLs.

6.1. Default CORS Support

The following example shows the result of the default CORS configuration for Spring Boot/Web
MVC. The server is ignoring the Origin header supplied by the client and does not return any CORS-
related authorization for the browser to use the response payload.

CORS Inactive, Origin Header Ignored

$ curl -v http://localhost:8080/api/anonymous/hello?name=jim
> GET /api/anonymous/hello?name=jim HTTP/1.1

> Host: localhost:8080

>

< HTTP/1.1 200

hello, jim :caller=(null)

$ curl -v http://localhost:8080/api/anonymous/hello?name=jim -H "Origin:
http://127.0.0.1:8080"

GET /api/anonymous/hello?name=jim HTTP/1.1

Host: localhost:8080

Origin: http://127.0.0.1:8080 @

Vv

>
>
>
< HTTP/1.1 200

hello, jim :caller=(null)

® Origin header normally supplied by browser when coming from a different domain —ignored
by server

The lack of headers does not matter for curl, but the CORS response does get evaluated when
executed within a browser.

6.2. Browser and CORS Response

6.2.1. Same Origin/Target Host

The following is an example of Javascript loaded from http://localhost:8080 and calling
http://localhost:8080. No Origin header is passed by the browser because it knows the Javascript

21

http://localhost:8080
http://localhost:8080
http://localhost:8080

was loaded from the same source it is calling.

CORS Inactive, Origin Header Not Supplied for Same Source

& 5 C @ localhost:8080/content/index.html a M % O H PO O - N2 o
. = @l Elements Console Sources Network Performance » 81 o : X

Response: hello, jim :caller=(null) _—
® ® ¥ Q ([Preservelog (] Disablecache Nothrotting ¥ = | 4+ ¥ o

Filter [J Invert [] Hide data URLs

All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other [Has blocked cookies
[] Blocked Reguests [_] 3rd-party requests

| 20 ms s0ms 60ms 80 ms 100 ms |
[e | e— | T
Name X Headers Preview Response Initiator Timing Cookies
[E index.html v General
jquery.min.js

Request URL: http://localhost:8080/content/hello.js
Request Method: GET
Status Code: ® 200

hello.js

[hello?name=jim

Remote Address: [::1]:8@80

4requests | 1.6 kB transferred | 93.6 k Referrer Policy: strict-origin-when-cross—-origin

H Conanla What's New k4

6.2.2. Different Origin/Target Host

However, if we load the Javascript from an alternate source, the browser will fail to process the

results. The following is an example of some Javascript loaded from http://127.0.0.1:8080 and
calling http://localhost:8080.

CORS Inactive, Origin Header Supplied for Different Source

22

http://127.0.0.1:8080
http://localhost:8080

® 127.0.0.1:8080/content/index.html H % O HEOOGCHRID ﬁ

™ ﬂ Elements Console Sources Network Performance » o2 A1 £ : X
® ©® ¥ Q | [JPreservelog [J Disablecache Nothroiting ¥ <& @ # ¥ o
Filter [J Invert [] Hide data URLs

All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other [] Has blocked cookies
[J Blocked Requests [] 3rd-party requests

| 20ms 40ms 60 ms 80 ms 100 ms
Name X Headers Payload Preview Response Initiator Timing
E index.html v Request Headers View source
Jquery.min.js Accept: */*
hello.js

Accept-Encoding: gzip, deflate, br
O s L Accept-Language: en-US,en;q=0.9

Connection: keep-alive

Host: localhost:8@80

Origin: http://127.0.0.1:8080

Referer: http://127.0.0.1:8080/

sec-ch-ua: "Google Chrome";v="185", "Not)A;Brand";v="8", "Chromium";v="10
g

sec-ch-ua-mobile: 70

sec-ch-ua-platform: "mac0s"

Sec-Fetch-Dest: empty

4 requests | 1.2 kB tran Sec-Fetch-Mode: cors

Console What's New x
M ®© topy @ | Filer Default levels ¥ || 2 Issues: 1 B 1 o

@ Access to XMLHttpRequest at 'http://localhost:808@/api/anonymous/hello?name=jim' index.html:1
from origin 'http://127.0.8.1:8888' has been blocked by CORS policy: No 'Access-Control-Allow-
Origin' header is present on the requested resource.

@ »GET http://localhost:8@88/api/anonymous/hello?name=jim net::ERR_FAILED jouery.min.js:6 @&
200 o

6.3. Enabling CORS

To globally enable CORS support, we can invoke http.cors(::+) with a method to call at runtime that
will evaluate and return the result for the CORS request—based on a given HttpServletRequest.
This is supplied when configuring the SecurityFilterChain.

Enabling CORS and Permit All

http.cors(cfg->cfg.configurationSource(corsPermitAl1ConfigurationSource()));

Example CORS Permit All Lambda Method Response

private CorsConfigurationSource corsPermitAl1ConfigurationSource() {
return (request) -> {
CorsConfiguration config = new CorsConfiguration();
config.applyPermitDefaultValues();
return config;

};

23

CORS Evaluation Interface Implemented

package org.springframework.web.cors;

public interface CorsConfigurationSource {

}

CorsConfiguration getCorsConfiguration(HttpServletRequest request);

6.3.1. CORS Headers

With CORS enabled and permitting all, we see some new VARY headers (indicating to caches that
content will be influenced by these headers). The browser will be looking for the Access-Control-
Allow-0Origin header being returned with a value matching the Origin header passed in (* being a

wildcard match).

CORS Approval Headers Returned in call cases

* V V V 5

N N N AN

curl -v http://localhost:8080/api/anonymous/hello?name=jim
GET /api/anonymous/hello?name=jim HTTP/1.1
Host: localhost:8080 @

Mark bundle as not supporting multiuse
HTTP/1.1 200

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers @

hello, jim :caller=(null)

$

curl -v http://localhost:8080/api/anonymous/hello?name=jim -H "Origin:

http://127.0.0.1:8080"

>

N N N N NV V V

GET /api/anonymous/hello?name=jim HTTP/1.1
Host: localhost:8080
Origin: http://127.0.0.1:8080 &

HTTP/1.1 200

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Access-Control-Allow-Origin: * @

hello, jim :caller=(null)

@ 0rigin header not supplied

@ No CORS Access-Control-Allow-0rigin supplied in response

® Origin header supplied by client

@ Access-Control-Allow-0rigin denotes approval for the given Origin (* = wildcard)

24

6.3.2. Browser Accepts Access-Control-Allow-Origin Header

Browser Accepts CORS Access-Control-Allow-Origin Response

< C (© 127.0.0.1:8080/content/index.htm|

x al

Response: hello, jim :caller=(null) TN

® ® ¥ Q | ([JPreservelog

Filter

All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other [] Has blocked cookies
(] Blocked Requests (] 3rd-party requests

I 20ms

Name

[E index.html
jquery.min.js
hello.js

[hello?name=jim

4 requests | 1.6 kB tran

6.4. Constrained CORS

Console

v Response Headers

s % 01 E®00CHD O
Sources Network Performance Memory — » B1 * LI ¢
() Disable cache Nothrotting ¥ “a 4 ¥ o

[J Invert (] Hide data URLs

100 ms I

40 ms B0 ms 80 ms
Headers Payload Preview Response Initiator Timing

View source
Access-Control-Allow-Origin: *
Cache-Control: no-cache, no-store, max-age=@, must-revalidate
Connection: keep-alive

Content-Length: 25

Content-Type: text/plain;charset=UTF-8
Date: Sat, 88 Oct 2822 15:53:43 GMT
Expires: 0

Keep-Alive: timeout=60

Pragma: no-cache

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access—Control-Request-Headers

X-Content-Type-Options: nosniff

We can define more limited rules for CORS acceptance by using additional commands of the

CorsConfiguration object.

Limiting CORS Acceptance

private CorsConfigurationSource corsLimitedConfigurationSource() {

return (request) -> {

CorsConfiguration config = new CorsConfiguration();
config.addAllowedOrigin("http://localhost:8080");
config.setAllowedMethods(List.of ("GET","POST"));

return config;

6.5. CORS Server Acceptance

In this example, I have loaded the Javascript from http://127.0.0.1:8080 and making a call to
http://localhost:8080 in order to match the configured Origin matching rules. The server is return
a 200/0K along with a Access-Control-Allow-0rigin value that matches the specific Origin provided.

25

http://127.0.0.1:8080
http://localhost:8080

CORS Acceptance Response

$ curl -v http://127.0.0.1:8080/api/anonymous/hello?name=jim -H "Origin:
http://1localhost:8080"

* Trying 127.0.0.1:8080...

Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)

GET /api/anonymous/hello?name=jim HTTP/1.1

Host: 127.0.0.1:8080 @

Origin: http://localhost:8080 @

*

HTTP/1.1 200

Vary: Origin

Vary: Access-Control-Request-Method

Vary: Access-Control-Request-Headers
Access-Control-Allow-Origin: http://localhost:8080 @
hello, jim :caller=(null)

N N N N NV V V V

@ Example Host and Origin have been flipped to match approved localhost:8080 Origin

@ Access-Control-Allow-0rigin denotes approval for the given Origin

6.6. CORS Server Rejection

This additional definition is enough to produce a 403/FORBIDDEN from the server versus a rejection
from the browser.

CORS Rejection Response

$ curl -v http://localhost:8080/api/anonymous/hello?name=jim -H "Origin:
http://127.0.0.1:8080"

GET /api/anonymous/hello?name=jim HTTP/1.1

Host: localhost:8080

Origin: http://127.0.0.1:8080

\V4

HTTP/1.1 403

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Invalid CORS request

N N N NV V V

6.7. Spring MVC @CrossOrigin Annotation

Spring also offers an annotation-based way to enable the CORS protocol. In the example below,
@CrossOrigin annotation has been added to the controller class or individual operations indicating
CORS constraints.

This technique is static.

26

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html

Spring MVC @CrossOrigin Annotation

import org.springframework.web.bind.annotation.CrossOrigin;
@CrossOrigin @

@RestController

public class HelloController {

@ defaults to all origins, etc.

27

Chapter 7. RestTemplate Authentication

Now that we have locked down our endpoints — requiring authentication —I want to briefly show
how we can authenticate with RestTemplate using an existing BASIC Authentication filter. I am
going to delay demonstrating WebClient to limit the dependencies on the current example
application — but we will do so in a similar way that does not change the interface to the caller.

7.1. ClientHttpRequestFactory

We will first define a factory for creating client connections. It is quite simple here because we are
not addressing things like HTTP/TLS connections. However, creating the bean external from the
clients makes the clients connection agnostic.

ClientHttpRequestFactory

ClientHttpRequestFactory requestFactory() {
return new SimpleClientHttpRequestFactory();

}

This simple ClientRequestFactory will get slightly more complicated when we

o enable SSL connections. By instantiating it now in a separate method we will make
the rest of the RestTemplate configuration oblivious to the SSL/non-SSL
configuration.

7.2. Anonymous RestTemplate

The following snippet is an example of a RestTemplate representing an anonymous user. This
should look familiar to what we have used prior to security.

RestTemplate Anonymous Client

public RestTemplate anonymousUser(RestTemplateBuilder builder,
ClientHttpRequestFactory requestFactory) {
RestTemplate restTemplate = builder.requestFactory(
//used to read the streams twice -- so we can use the logging filter below
()->new BufferingClientHttpRequestFactory(requestFactory))
.interceptors(new RestTemplatelLoggingFilter())
.build(); @

return restTemplate;

@ vanilla RestTemplate with our debug log interceptor

28

7.3. Authenticated RestTemplate

The following snippet is an example of a RestTemplate that will authenticate as "user/password"
using Http BASIC Authentication. The authentication is added as a filter along with the logger. The
business code using this client will be ignorant of the extra authentication details.

RestTemplate Authenticating Client

@Bean
public RestTemplate authnUser(RestTemplateBuilder builder,
ClientHttpRequestFactory requestFactory) {
RestTemplate restTemplate = builder.requestFactory(
//used to read the streams twice -- so we can use the logging filter below
()->new BufferingClientHttpRequestFactory(requestFactory))
.interceptors(new BasicAuthenticationInterceptor("user", "password"), @
new RestTemplateloggingFilter())
.build();
return restTemplate;

@M added BASIC Auth filter to add Authorization Header

7.4. Authentication Integration Tests with
RestTemplate

The following shows the different RestTemplate instances being injected that have different
credentials assigned. The different attribute names, matching the @Bean factory names act as a
qualifier to supply the right instance of RestTemplate.

(classes= (ClientTestConfiguration.class,
webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT,
properties = "test=true") @

public class AuthnRestTemplateNTest {
private RestTemplate anonymousUser;

private RestTemplate authnUser;

@ test property triggers Swagger @Configuration and anything else not suitable during testing to
disable

29

Chapter 8. RestClient Authentication

Let’s also show how to authenticate with RestClient. We can do that using a builder or use a fully
configured RestTemplate.

8.1. Anonymous RestClient

The following snippet is an example of a RestClient representing an anonymous user.

RestClient Anonymous Client

public RestClient anonymousUserClient(RestClient.Builder builder,

ClientHttpRequestFactory requestFactory) {
return builder.requestFactory(//used to read streams twice -- to use logging

filter
new BufferingClientHttpRequestFactory(requestFactory))

.requestInterceptor(new RestTemplatelLoggingFilter())
.build();

@ vanilla RestClient with our debug log interceptor

8.2. Authenticated RestTemplate

The following snippet is an example of a RestClient built from an existing RestTemplate. It will also
authenticate as "user/password" using Http BASIC Authentication.

RestClient Authenticating Client

@Bean
public RestClient authnUserClient(RestTemplate authnUser) {

return RestClient.create(authnUser); @

}

@ uses already assembled filters from RestTemplate

30

Chapter 9. Mock MVC Authentication

There are many test frameworks within Spring and Spring Boot that I did not cover earlier. I
limited them because covering them all early on added limited value with a lot of volume.
However, I do want to show you a small example of MockMvc and how it to can be configured for
authentication. The following example shows a:

* normal injection of the mock that will be an anonymous user

* how to associate a mock to the security context

MockMvc Authentication Setup

(

properties = "test=true")
public class AuthConfigMockMvcNTest {
private WebApplicationContext context;

private MockMvc anonymous; //letting MockMvc do the setup work
private MockMvc userMock; //example manual instantiation ®
private final String uri = "/api/anonymous/hello";

public void init() {
userMock = MockMvcBuilders //the rest of manual instantiation
.webAppContextSetup(context)
.apply(SecurityMockMvcConfigurers.springSecurity())
.build();

@ there is no functional difference between the injected or manually instantiated MockMvc the way
it is performed here

9.1. MockMvc Anonymous Call

The first test is a baseline example showing a call through the mock to a service that allows all
callers and no required authentication. The name of the mock is not important. It is a anonymous
client at this point because we have not assigned it any identity.

MockMvc Anonymous Call

public void anonymous_can_call_get() throws Exception {
anonymous . per form(MockMvcRequestBuilders.get(uri).queryParam("name","jim"))
.andDo(print())
.andExpect(status().is0k())
.andExpect(content().string("hello, jim :caller=(null)"));

31

9.2. MockMvc Authenticated Call

The next example shows how we can inject an identity into the mock for use during the test
method. We can use an injected or manual mock for this. The important point to notice is that the
mock user’s identity is assigned through an annotation on the @Test.

MockMvc Authenticated Call
("user")

public void user_can_call_get() throws Exception {
userMock.perform(MockMvcRequestBuilders.get(uri)
.queryParam("name","jim"))
.andDo(print())
.andExpect(status().is0k())
.andExpect(content().string("hello, jim :caller=user"));

Although I believe RestTemplate tests are pretty good at testing client access—the WebMvc
framework was a very convenient to quickly verify and identify issues with the SecurityFilterChain
definitions.

9.3. MockMvc does not require SpringBootTest

The MockMvc web test framework does not require the full application context implemented by
SpringBootTest. MockMvc provides a means to instantiate small unit tests incorporating mocks
behind the controllers. For example, I have used it as a lightweight way to test ControllerAdvice
/ExceptionAdvice.

32

Chapter 10. Summary

In this module, we learned:

* how to configure a SecurityFilterChain

* how to define no security filters for static resources

* how to customize the SecurityFilterChain for API endpoints

* how to expose endpoints that can be called from anonymous users
* how to require authenticated users for certain endpoints

* how to CORS-enable the API

* how to define BASIC Auth for OpenAPI and for use by Swagger

* how to add identity to RestTemplate and RestClient clients

33

	Spring Security Authentication
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Configuring Security
	2.1. WebSecurityConfigurer and Component-based Approaches
	2.2. Core Application Security Configuration
	2.3. Ignoring Static Resources
	2.4. SecurityFilterChain Matcher
	2.5. SecurityFilterChain with Explicit MvcRequestMatcher
	2.6. HttpSecurity Builder Methods
	2.7. Match Requests
	2.8. Authorize Requests
	2.9. Authentication
	2.10. Header Configuration
	2.11. Stateless Session Configuration

	Chapter 3. Configuration Results
	3.1. Successful Anonymous Call
	3.2. Successful Authenticated Call
	3.3. Rejected Unauthenticated Call Attempt

	Chapter 4. Authenticated User
	4.1. Inject UserDetails into Call
	4.2. Obtain SecurityContext from Holder

	Chapter 5. Swagger BASIC Auth Configuration
	5.1. Swagger Authentication Configuration
	5.2. Swagger Security Scheme

	Chapter 6. CORS
	6.1. Default CORS Support
	6.2. Browser and CORS Response
	6.3. Enabling CORS
	6.4. Constrained CORS
	6.5. CORS Server Acceptance
	6.6. CORS Server Rejection
	6.7. Spring MVC @CrossOrigin Annotation

	Chapter 7. RestTemplate Authentication
	7.1. ClientHttpRequestFactory
	7.2. Anonymous RestTemplate
	7.3. Authenticated RestTemplate
	7.4. Authentication Integration Tests with RestTemplate

	Chapter 8. RestClient Authentication
	8.1. Anonymous RestClient
	8.2. Authenticated RestTemplate

	Chapter 9. Mock MVC Authentication
	9.1. MockMvc Anonymous Call
	9.2. MockMvc Authenticated Call
	9.3. MockMvc does not require SpringBootTest

	Chapter 10. Summary

