API Data Formats

jim stafford

Fall 2024 v2022-10-02: Built: 2024-11-19 21:32 EST

Table of Contents

. Introduction

3.
6.

9.

1.1. Goals
1.2. Objectives

. Pattern Data Transfer Object

2.1. DTO Pattern Problem Space
2.2. DTO Pattern Solution Space
2.3. DTO Pattern Players

. Sample DTO Class
. Time/Date Detour

4.1. Pre Java 8 Time
4.2.java.time

4.3. Date/Time Formatting
4.4. Date/Time Exchange
Java Marshallers

JSON Content

6.1. Jackson JSON

6.2. JSON-B

. XML Content

7.1. Jackson XML
7.2.JAXB

. Configure Server-side Jackson

8.1. Dependencies

8.2. Configure ObjectMapper
8.3. Controller Properties

Client Marshall Request Content

10. Client Filters

11. Date/Time Lenient Parsing and Formatting

10.1. RestTemplate and RestClient

10.2. WebClient

11.1. Out of the Box Time-related Formatting
11.2. Out of the Box Time-related Parsing
11.3. JSON-B DATE_FORMAT Option

11.4. JSON-B Custom Serializer Option

11.5. Jackson Lenient Parser

12. Summary

© 3 OO U1 U1 U1 R W NN R e e

W W W W W W W W W W N N NDNDN R = s
o OO U1 U B W W L, O O 0 Ul bk B b © 00 33 s O O

Chapter 1. Introduction

Web content is shared using many standardized MIME Types. We will be addressing two of them
here

« XML

* JSON
I will show manual approaches to marshaling/unmarshalling first. However, content is
automatically marshalled/unmarshalled by the web client container once everything is set up
properly. Manual marshaling/unmarshalling approaches are mainly useful in determining provider

settings and annotations — as well as to perform low-level development debug outside the server
on the shape and content of the payloads.

1.1. Goals

The student will learn to:

* identify common/standard information exchange content types for web API communications

* manually marshal and unmarshal Java types to and from a data stream of bytes for multiple
content types

* negotiate content type when communicating using web API
* pass complex Data Transfer Objects to/from a web API using different content types

* resolve data mapping issues

1.2. Objectives

At the conclusion of this lecture and related exercises, the student will be able to:

1. design a set of Data Transfer Objects (DTOs) to render information from and to the service
2. define Java class content type mappings to customize marshalling/unmarshalling
3. specify content types consumed and produced by a controller

4. specify content types supplied and accepted by a client

https://www.freeformatter.com/mime-types-list.html

Chapter 2. Pattern Data Transfer Object

There can be multiple views of the same conceptual data managed by a service. They can be the
same physical implementation — but they serve different purposes that must be addressed. We will
be focusing on the external client view (Data Transfer Object (DTO)) during this and other web tier
lectures. I will specifically contrast the DTO with the internal implementation view (Business Object
(BO)) right now to help us see the difference in the two roles.

2.1. DTO Pattern Problem Space
Context ['the service’\

Business Objects (data used directly by the

) . . . «BlUsiness Logic»
service tier and potentially mapped directly | Client Service database
to the database) represent too much doWorlk() -
information or behavior to transfer to \ e
remote client .7
» stores
&
ks
St
wH s
data

Figure 1. Clients and Service Sharing
Implementation Data

Problem

Issues can arise when service implementations are complex.

* client may get data they do not need

* client may get data they cannot handle

« client may get data they are not authorized to use

* client may get too much data to be useful (e.g., entire database serialized to client)

Forces

The following issues are assumed to be true:

» some clients are local and can share object references with business logic

» handling specifics of remote clients is outside core scope of business logic

2.2. DTO Pattern Solution Space

Solution ‘the service')

+ define a set of data that is appropriate for «Web Facade»
Controller
1 «Business Logic»
transferring requests and responses o R ggg iaios S
between client and service HEAD doWork() ,
PUT i
+ define a Remote (Web) Facade over \ DELETE J
i
Business Logic to handle remote /

/stores
I

communications with the client v ;

«DTOm» . «B0»
» remote Facade constructs Data Transfer client_data L rePresentation of |
Objects (DTOs) from Business Objects that

are appropriate for remote client view

Figure 2. DTO Represents Client View of Data
* remote Facade uses DTOs to construct or

locate Business Objects to communicate

with Business Logic

DTO/BO Mapping Location is a Design Choice

The design decision of which layer translates between DTOs of the API and BOs of

o the service is not always fixed. Since the DTO is an interface pattern and the Web
API is one of many possible interface facades and clients of the service — the job of
DTO/BO mapping may be done in the service tier instead.

2.3. DTO Pattern Players

Data Transfer Object

* represents a subset of the state of the application at a point in time
» not dependent on Business Objects or server-side technologies
> doing so would require sending Business Objects to client
« XML and JSON provide the “ultimate isolation” in DTO implementation/isolation

Remote (Web) Facade

* uses Business Logic and DTOs to perform core business logic
* manages interface details with client

Business Logic

» performs core implementation duties that may include interaction with backend services
and databases

Business Object (Entity)
 representation of data required to implement service

* may have more server-side-specific logic when DTOs are present in the design

DTOs and BOs can be same class(es) in simple or short-lived services

O DTOs and BOs can be the same class in small services. However, supporting
- multiple versions of clients over longer service lifetimes may cause even small
services to split the two data models into separate implementations.

Chapter 3. Sample DTO Class

The following is an example DTO class we will look to use to represent client view of data in a
simple "Quote Service". The QuoteDT0 class can start off as a simple POJO and —depending on the
binding (e.g., JSON or XML) and binding library (e.g., Jackson, JSON-B, or JAXB) - we may have to
add external configuration and annotations to properly shape our information exchange.

The class is a vanilla POJO with a default constructor, public getters and setters, and other
convenience methods — mostly implemented by Lombok. The quote contains three different types
of fields (int, String, and LocalDate). The date field is represented using java.time.LocalDate.

Example Starting POJO for DTO
package info.ejava.examples.svc.content.quotes.dto;

import lombok.*;
import java.time.lLocalDate;

@
@

public class QuoteDTO {
private int id;
private String author;
private String text;
private LocalDate date; ®
private String ignored; @

@ default constructor
@ public setters and getters
® using Java 8, java.time.LocalDate to represent generic day of year without timezone

@ example attribute we will configure to be ignored

Lombok @Builder and @With

@Builder will create a new instance of the class using incrementally defined

(;) properties. @With creates a copy of the object with a new value for one of its
properties. @Builder can be configured to create a copy constructor (i.e., a copy
builder with no property value change).

Lombok @Builder and Constructors

@Builder requires an all-args-ctor and will define a package-friendly one unless
O there is already a ctor defined. Unmarshallers require a no-args-ctor and can be
provided using @NoArgsConstructor. The presence of the no-args-ctor turns off the
required all-args-ctor for @Builder and can be re-enabled with @A11ArgsConstructor.

https://projectlombok.org/features/Builder
https://projectlombok.org/features/With
https://projectlombok.org/features/Builder

Chapter 4. Time/Date Detour

While we are on the topic of exchanging data— we might as well address time-related data that can
cause numerous mapping issues. Our issues are on multiple fronts.

* what does our time-related property represent?

- e.g., a point in time, a point in time in a specific timezone, a birthdate, a daily wake-up time

what type do we use to represent our expression of time?
- do we use legacy Date-based types that have a lot of support despite ambiguity issues?

- do we use the newer java.time types that are more explicit in meaning but have not fully
caught on everywhere?

how should we express time within the marshalled DTO?

* how can we properly unmarshal the time expression into what we need?

how can we handle the alternative time wire expressions with minimal pain?

4.1. Pre Java 8 Time

During pre-Java8, we primarily had the following time-related java.util classes

Date represents a point in time without timezone or calendar information. The point is a
Java long value that represents the number of milliseconds before or after 1970 UTC.
This allows us to identify a millisecond between 292,269,055 BC and 292,278,994 AD
when applied to the Gregorian calendar.

Calendar interprets a Date according to an assigned calendar (e.g., Gregorian Calendar) into
years, months, hours, etc. Calendar can be associated with a specific timezone offset
from UTC and assumes the Date is relative to that value.

During the pre-Java 8 time period, there was also a time-based library called Joda that became
popular at providing time expressions that more precisely identified what was being conveyed.

4.2. java.time

The ambiguity issues with java.util.Date and the expression and popularity of Joda caused it to be
adopted into Java 8 (JSR 310). The following are a few of the key java.time constructs added in Java
8.

Instant represents a point in time at 00:00 offset from UTC. The point is a nanosecond and
improves on java.util.Date by assigning a specific UTC timezone. The toString()
method on Instant will always print a UTC-relative value (1970-01-
01700:00:00.0000000012).

OffsetDate adds Calendar-like view to an Instant with a fixed timezone offset (1970-01-
Time 01700:00:00-04:00).

https://docs.oracle.com/javase/17/docs/api/java/util/Date.html
https://docs.oracle.com/javase/17/docs/api/java/util/Calendar.html
https://www.joda.org/joda-time/
https://jcp.org/en/jsr/detail?id=310
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/OffsetDateTime.html

ZonedDate adds timezone identity to OffsetDateTime — which can be used to determine the

Time appropriate timezone offset (i.e., daylight savings time) (1969-12-
31723:00:00.000000001-05:00[America/New_York], 1769-12-31723:03:58.000000001 -
04:56:02[America/New_York]). This class is useful in presenting current time relative to
where and when the time is represented. For example, during early testing I made a
typo in my 1776 date and used 1976 for year. I also used Zoneld.systemDefault()
("America/New_York"). The Zoneld had a -04:00 hour difference from UTC in 1976 and
a peculiar -04:56:02 hour difference from UTC in 1776. Zoneld has the ability to derive
a different timezone offset based on rules for that zone.

LocalDate a generic date, independent of timezone and time (1970-01-01). A common example of
this is a birthday or anniversary.

LocalTime a generic time of day, independent of timezone or specific date. This allows us to
express "I set my alarm for 6am" - without specifying the actual dates that is
performed (00:00:00.000000001).

LocalDate a date and time but lacking a specific timezone offset from UTC (1970-01-

Time 01700:00:00.000000001). This allows a precise date/time to be stored that is assumed to
be at a specific timezone offset (usually UTC) — without having to continually store the
timezone offset to each instance.

Duration a time-based amount of time (e.g., 30.5 seconds). Vocabulary supports from
milliseconds to days.

Period a date based amount of time (e.g., 2 years and 1 day). Vocabulary supports from days
to years.

4.3. Date/Time Formatting

There are two primary format frameworks for formatting and parsing time-related fields in text
fields like XML or JSON:

java.text. This legacy java.text framework’s primary job is to parse a String of text into a

DateFormat Java Date instance or format a Java Date instance into a String of text. Subclasses
of DateFormat take care of the details and java.text.SimpleDateFormat accepts a
String format specification. An example format yyyy-MM-ddITOHH:mm: ss. SSSX
assigned to UTC and given a Date for the 4th of July would produce 1776-07-
04700:00:00.0007.

java.time. This newer java.time formatter performs a similar role to DateFormat and

format. SimpleDateFormat combined. It can parse a String into java.time constructs as well
DateTimeFor as format instances to a String of text. It does not work directly with Dates, but the
matter java.time constructs it does produce can be easily converted to/from

java.util.Date thru the Instance type. The coolest thing about DateTimeFormatter is
that not only can it be configured using a parsable string — it can also be defined
using Java objects. The following is an example of the formatter. It is built using
the ISO_LOCAL_DATE and ISO_LOCAL_TIME formats.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/ZonedDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/ZonedDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDate.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDateTime.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDateTime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/Duration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/Period.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/DateFormat.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/DateFormat.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/format/DateTimeFormatter.html

Example DateTimeFormatter.ISO_LOCAL_DATE_TIME

public static final DateTimeFormatter ISO_LOCAL_DATE_TIME;

static {

ISO_LOCAL_DATE_TIME = new DateTimeFormatterBuilder()

.parse(Caselnsensitive()

.append(ISO_LOCAL_DATE)

.appendLiteral('T")

.append(ISO_LOCAL_TIME)

.toFormatter (ResolverStyle.STRICT, IsoChronology.INSTANCE);

This, wrapped with some optional and default value constructs to handle missing information
makes for a pretty powerful time parsing and formatting tool.

4.4. Date/Time Exchange

There are a few time standards supported by Java date/time formatting frameworks:

ISO 8601

RFC 822/
RFC 1123

This standard is cited in many places but hard to track down an official example of
each and every format — especially when it comes to 0 values and timezone offsets.
However, an example representing a ZonedDateTime and EST may look like the
following: 1776-07-04702:30:00.123456789-05:00 and 1776-07-04T07:30:00.123456789Z
The nanoseconds field is 9 digits long but can be expressed to a level of supported
granularity — commonly 3 decimal places for java.util.Date milliseconds.

These are lesser followed standards for APIs and includes constructs like an English
word abbreviation for day of week and month. The DateTimeFormatter example for
this group is Tue, 3 Jun 2008 11:05:30 GMT "

My examples will work exclusively with the ISO 8601 formats. The following example leverages the
Java expression of time formatting to allow for multiple offset expressions (Z, +00, +0000, and +00:00)
on top of a standard LOCAL_DATE_TIME expression.

Example Lenient ISO Date/Time Parser

public static final DateTimeFormatter UNMARSHALLER
= new DateTimeFormatterBuilder()

.parseCaselnsensitive()
.append(DateTimeFormatter.ISO_LOCAL_DATE)
.appendLiteral('T")
.append(DateTimeFormatter.ISO_LOCAL_TIME)

.parselLenient()

.optionalStart().appendOffset("+HH", "Z").optionalEnd()
.optionalStart().appendOffset("+HH:mm", "Z").optionalEnd()
.optionalStart().appendOffset("+HHmm", "Z").optionalEnd()
.optionalStart().appendLiteral('[").parseCaseSensitive()

.appendZoneRegionId()
.appendLiteral(']").optionalEnd()

.parseDefaulting(ChronoField.OFFSET_SECONDS,2)

.parseStrict()
.toFormatter();

Use ISO_LOCAL_DATE_TIME Formatter by Default

o Going through the details of DateTimeFormatterBuilder is out of scope for what we
are here to cover. Using the ISO_LOCAL_DATE_TIME formatter should be good enough

in most cases.

[1] "DateTimeFormatter RFC_1123_DATE_TIME Javadoc", DateTimeFormatter Javadoc, Oracle

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/format/DateTimeFormatter.html#RFC_1123_DATE_TIME
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/format/DateTimeFormatter.html#RFC_1123_DATE_TIME
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/format/DateTimeFormatter.html#RFC_1123_DATE_TIME

Chapter 5. Java Marshallers

I will be using four different data marshalling providers during this lecture:

» Jackson JSON the default JSON provider included within Spring and Spring Boot. It
implements its own proprietary interface for mapping Java POJOs to JSON
text.

* JSON Binding a relatively new Jakarta EE standard for JSON marshalling. The reference
(JSON-B) implementation is Yasson from the open source Glassfish project. It will be
used to verify and demonstrate portability between the built-in Jackson JSON
and other providers.

» Jackson XML a tightly integrated sibling of Jackson JSON. This requires a few extra module
dependencies but offers a very similar setup and annotation set as the JSON
alternative. I will use Jackson XML as my primary XML provider during

examples.

* Java a well-seasoned XML marshalling framework that was the foundational
Architecture requirement for early JavaEE servlet containers. I will use JAXB to verify and
for XML demonstrate portability between Jackson XML and other providers.

Binding
(JAXB)

Spring Boot comes with a Jackson JSON pre-wired with the web dependencies. It seamlessly gets
called from RestTemplate, RestClient, WebClient and the RestController when application/json or
nothing has been selected. Jackson XML requires additional dependencies — but integrates just as
seamlessly with the client and server-side frameworks for application/xml. For those
reasons — Jackson JSON and Jackson XML will be used as our core marshalling frameworks. JSON-B
and JAXB will just be used for portability testing.

https://github.com/eclipse-ee4j/yasson

Chapter 6. JSON Content

JSON is the content type most preferred by Javascript Ul frameworks and NoSQL databases. It has
quickly overtaken XML as a preferred data exchange format.

Example JSON Document

{

"id" : 0,

"author" : "Hotblack Desiato",

"text" : "Parts of the inside of her head screamed at other parts of the inside of
her head.",

"date" : "1981-05-15"

}

Much of the mapping can be accomplished using Java reflection. Provider-specific annotations can
be added to address individual issues. Let’s take a look at how both Jackson JSON and JSON-B can be
used to map our QuoteDTO POJO to the above JSON content. The following is a trimmed down copy of
the DTO class I showed you earlier. What kind of things do we need to make that mapping?

Review: Example DTO

public class QuoteDTO {
private int id;
private String author;
private String text;
private LocalDate date; @
private String ignored; @

@ may need some LocalDate formatting

@ may need to mark as excluded

6.1. Jackson JSON

For the simple cases, our DTO classes can be mapped to JSON with minimal effort using Jackson
JSON. However, we potentially need to shape our document and can use Jackson annotations to
customize. The following example shows using an annotation to eliminate a property from the

JSON document.

10

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-annotations

Example Pre-Tweaked JSON Payload

{
"id" : 0,
"author" : "Hotblack Desiato",
"text" : "Parts of the inside of her

head screamed at other parts of the
inside of her head.",
"date" : [1981, 5, 15], @
"ignored" : "ignored" @

Example QuoteDTO with Jackson Annotation(s)

import
com.fasterxml.jackson.annotation.JsonIgn
ore;

public class QuoteDTO {
private int id;
private String author;
private String text;

} private LocalDate date;
@
@ LocalDate in a non-ISO array format private String ignored;

@ unwanted field included

@ Jackson @JsonIgnore causes the Java property
to be ignored when converting to/from JSON

Date/Time Formatting Handled at ObjectMapper/Marshaller Level

The example annotation above only addressed the ignore property. We will
address date/time formatting at the ObjectMapper/marshaller level below.

6.1.1. Jackson JSON Initialization

Jackson JSON uses an ObjectMapper class to go to/from POJO and JSON. We can configure the mapper
with options or configure a reusable builder to create mappers with prototype options. Choosing
the latter approach will be useful once we move inside the server.

Jackson JSON Imports
import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.databind.SerializationFeature;
import org.springframework.http.converter.json.Jackson20bjectMapperBuilder;

We have the ability to simply create a default ObjectMapper directly.

Simple Jackson JSON Initialization

ObjectMapper mapper = new ObjectMapper();

However, when using Spring it is useful to use the Spring Jackson20bjectMapperBuilder class to set
many of the data marshalling types for us.

Jackson JSON Initialization using Builder
import org.springframework.http.converter.json.Jackson20bjectMapperBuilder;

ObjectMapper mapper = new Jackson20bjectMapperBuilder()

11

.featuresToEnable(SerializationFeature.INDENT OUTPUT) @

.featuresToDisable(SerializationFeature.WRITE DATES_AS_TIMESTAMPS) @
//more later

.createXmlMapper(false) @

.build();

@ optional pretty print indentation
@ option to use ISO-based strings versus binary values and arrays

® same Spring builder creates both XML and JSON ObjectMappers

Use Injection When Inside Container

@ When inside the container, have the Jackson20bjectMapperBuilder injected (i.e., not
- locally-instantiated) in order to pick wup external and property
configurations/customizations.

By default, Jackson will marshal zone-based timestamps as a decimal number (e.g,
-6106031876.123456789) and generic date/times as an array of values (e.g., [1776, 7, 4, 8, 2, 4,
123456789] and [1966, 1, 9 1). By disabling this serialization feature, Jackson produces ISO-based
strings for all types of timestamps and generic date/times (e.g., 1776-07-04T708:02:04.123456789Z and
2002-02-14)

The following example from the class repository shows a builder customizer being registered as a
@Bean factory to be able to adjust Jackson defaults used by the server. The returned lambda function
is called with a builder each time someone injects a Jackson20bjectMapper — provided the Jackson
AutoConfiguration has not been overridden.

Example Jackson2ObjectMapperBuilder Custom Configuration

/**

* Execute these customizations first (Highest Precedence) and then the

* properties second so that properties can override Java configuration.

*/

@Bean

@0rder(Ordered.HIGHEST_PRECEDENCE)

public Jackson20bjectMapperBuilderCustomizer jacksonMapper() {

return (builder) -> { builder

//spring.jackson.serialization.indent-output=true
.featuresToEnable(SerializationFeature.INDENT OUTPUT)
//spring.jackson.serialization.write-dates-as-timestamps=false
.featuresToDisable(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS)
//spring.jackson.date-

format=info.ejava.examples.svc.content.quotes.dto.ISODateFormat
.dateFormat(new ISODateFormat());

+;

12

https://gitlab.com/ejava-javaee/ejava-springboot/-/tree/main/svc/svc-api/content-quotes-example/content-quotes-svc/src/main/java/info/ejava/examples/svc/content/quotes/QuotesApplication.java

6.1.2. Jackson JSON Marshalling/Unmarshalling
The mapper created from the builder can then be used to marshal the POJO to JSON.

Marshal DTO to JSON using Jackson
private ObjectMapper mapper;

public <T> String marshal(T object) throws IOException {
StringWriter buffer = new StringWriter();
mapper.writeValue(buffer, object);
return buffer.toString();

The mapper can just as easy —unmarshal the JSON to a POJO instance.

Unmarshal DTO from JSON using Jackson

public <T> T unmarshal(Class<T> type, String buffer) throws IOException {
T result = mapper.readValue(buffer, type);
return result;

A packaged set of marshal/unmarshal convenience routines have been packaged inside ejava-dto-
util.

6.1.3. Jackson JSON Maven Aspects

For modules with only DTOs with Jackson annotations, only a direct dependency on jackson-
annotations is necessary.

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
</dependency>

Modules that will be marshalling/unmarshalling JSON will need the core libraries that can be
conveniently brought in through a dependency on one of the following two starters.

* spring-boot-starter-web

* spring-boot-starter-json

org.springframework.boot:spring-boot-starter-web:jar

+- org.springframework.boot:spring-boot-starter-json:jar

| +- com.fasterxml.jackson.core:jackson-databind:jar

| | +- com.fasterxml.jackson.core:jackson-annotations:jar
| | \- com.fasterxml.jackson.core:jackson-core

13

https://gitlab.com/ejava-javaee/ejava-springboot/-/tree/main/common/ejava-dto-util/src/main/java/info/ejava/examples/common/dto
https://gitlab.com/ejava-javaee/ejava-springboot/-/tree/main/common/ejava-dto-util/src/main/java/info/ejava/examples/common/dto

| +- com.fasterxml.jackson.datatype:jackson-datatype-jdk8:jar @®
| +- com.fasterxml.jackson.datatype:jackson-datatype-jsr310:jar @
| \- com.fasterxml.jackson.module:jackson-module-parameter-names:jar

@ defines mapping for java.time types

a Jackson has built-in ISO mappings for Date and java.time

- Jackson has built-in mappings to ISO for java.util.Date and java.time data types.

6.2. JSON-B

JSON-B (the standard) and Yasson (the reference implementation of JSON-B) can pretty much
render a JSON view of our simple DTO class right out of the box. Customizations can be applied
using JSON-B annotations. In the following example, the ignore Java property is being excluded
from the JSON output.

Example Pre-Tweaked J[SON-B Payload Example QuoteDTO with JSON-B Annotation(s)
{ .
"author": "Reg Nullify", import jakarta.json.bind.annotation
"date": "1986-05-20", @ .JsonbTransient;
"id": 0, .
"ignored": "ignored", public class QuoteDTO {
"text": "In the beginning, the Universe private int id;
was created. This has made a lot of private String author;
people very angry and been widely private String text;
regarded as a bad move." private LocalDate date;
} O]

private String ignored;
@ LocalDate looks to already be in an ISO-8601 }

format
@ @JsonbTransient used to identify unmapped

Java properties

6.2.1. JSON-B Initialization

JSON-B provides all mapping through a Jsonb builder object that can be configured up-front with
various options.

JSON-B Imports
import jakarta.json.bind.Jsonb;

import jakarta.json.bind.JsonbBuilder;
import jakarta.json.bind.JsonbConfig;

14

http://json-b.net/
https://javaee.github.io/jsonb-spec/users-guide.html
https://javaee.github.io/jsonb-spec/docs/user-guide.html#changing-property-names

JSON-B Initialization

JsonbConfig config=new JsonbConfig()
.setProperty(JsonbConfig.FORMATTING, true); @
Jsonb builder = JsonbBuilder.create(config);

@ adds pretty-printing features to payload

Jsonb is no longer javax

The Jsonb package has changed from javax.json.bind to jakarta.json.bind.

import javax.json.bind.Jsonb; //legacy
import jakarta.json.bind.Jsonb; //modern

6.2.2. JSON-B Marshalling/Unmarshalling

The following two examples show how JSON-B marshals and unmarshals the DTO POJO instances
to/from JSON.

Marshall DTO using JSON-B
private Jsonb builder;
public <T> String marshal(T object) {

String buffer = builder.toJson(object);
return buffer;

Unmarshal DTO using JSON-B

public <T> T unmarshal(Class<T> type, String buffer) {
T result = (T) builder.fromJson(buffer, type);
return result;

6.2.3. JSON-B Maven Aspects

Modules defining only the DTO class require a dependency on the following API definition for the
annotations.

<dependency>
<groupIld>jakarta.json</groupld>
<artifactId>jakarta.json-api</artifactId>
</dependency>

Modules marshalling/unmarshalling JSON documents using JSON-B/Yasson implementation require

15

dependencies on binding-api and a runtime dependency on yasson implementation.

org.eclipse:yasson:jar

+- jakarta.json.bind:jakarta.json.bind-api:jar
+- jakarta.json:jakarta.json-api:jar

\- org.glassfish:jakarta.json:jar

16

Chapter 7. XML Content

XML is preferred by many data exchange services that require rigor in their data definitions. That
does not mean that rigor is always required. The following two examples are XML renderings of a
QuoteDTO.

The first example is a straight mapping of Java class/attribute to XML elements. The second
example applies an XML namespace and attribute (for the id property). Namespaces become
important when mixing similar data types from different sources. XML attributes are commonly
used to host identity information. XML elements are commonly used for description information.
The sometimes arbitrary use of attributes over elements in XML leads to some confusion when
trying to perform direct mappings between JSON and XML —since JSON has no concept of an
attribute.

Example Vanilla XML Document

<QuoteDT0> @

<id>0</id> @

<author>Zaphod Beeblebrox</author>

<text>Nothing travels faster than the speed of light with the possible exception of
bad news, which obeys its own special laws.</text>

<date>1927</date> ®

<date>b</date>

<date>11</date>

<ignored>ignored</ignored> @
</QuoteDTO>

® root element name defaults to variant of class name
@ all properties default to @XmlElement mapping
® java.time types are going to need some work

@ all properties are assumed to not be ignored

Collections Marshall Unwrapped

The three (3) date elements above are elements of an ordered collection
@ marshalled without a wrapping element. If we wanted to keep the collection

(versus marshalling in ISO format), it would be common to define a wrapping

element to encapsulate the collection — much like parentheses in a sentence.

Example XML Document with Namespaces, Attributes, and Desired Shaping

<quote xmlns="urn:ejava.svc-controllers.quotes" id="0"> ® @ ®

<author>Zaphod Beeblebrox</author>

<text>Nothing travels faster than the speed of light with the possible exception of
bad news, which obeys its own special laws.</text>

<date>1927-06-11</date>
</quote> @

17

@ quote is our targeted root element name
@ urn:ejava.svc-controllers.quotes is our targeted namespace
® we want the id mapped as an attribute — not an element

@ we want certain properties from the DTO not to show up in the XML

7.1. Jackson XML

Like Jackson JSON, Jackson XML will attempt to map a Java class solely on Java reflection and
default mappings. However, to leverage key XML features like namespaces and attributes, we need
to add a few annotations. The partial example below shows our POJO with Lombok and other

mappings excluded for simplicity.

Example QuoteDTO with Jackson XML Annotations

import com.fasterxml.jackson.dataformat.xml.annotation.JacksonXmlProperty;
import com.fasterxml.jackson.dataformat.xml.annotation.JacksonXmlRootElement;

(localName = "quote", @
namespace = "urn:ejava.svc-controllers.quotes") @

public class QuoteDTO {
(isAttribute = true) ®
private int id;
private String author;
private String text;
private LocalDate date;

@

private String ignored;

@ defines the element name when rendered as the root element

@ defines namespace for type

® maps id property to an XML attribute — default is XML element

@ reuses Jackson JSON general purpose annotations

7.1.1. Jackson XML Initialization

Jackson XML initialization is nearly identical to its JSON sibling as long as we want them to have the
same options. In all of our examples I will be turning off array-based, numeric dates expression in

favor of ISO-based strings.

Jackson XML Imports
import com.fasterxml.jackson.databind.SerializationFeature;

import com.fasterxml.jackson.dataformat.xml.XmlMapper;
import org.springframework.http.converter.json.Jackson20bjectMapperBuilder;

18

https://github.com/FasterXML/jackson-dataformat-xml
https://github.com/FasterXML/jackson-dataformat-xml/wiki/Jackson-XML-annotations

Jackson XML Initialization

XmlMapper mapper = new Jackson20bjectMapperBuilder()
.featuresToEnable(SerializationFeature.INDENT OUTPUT) @
.featuresToDisable(SerializationFeature .WRITE_DATES_AS_TIMESTAMPS) @
//more later
.createXmlMapper(true) ®
.build();

@ pretty print output
@ use ISO-based strings for time-based fields versus binary numbers and arrays

® XmlMapper extends ObjectMapper

7.1.2. Jackson XML Marshalling/Unmarshalling

Marshall DTO using Jackson XML

public <T> String marshal(T object) throws IOException {
StringWriter buffer = new StringWriter();
mapper .writeValue(buffer, object);
return buffer.toString();

Unmarshal DTO using Jackson XML

public <T> T unmarshal(Class<T> type, String buffer) throws IOException {
T result = mapper.readValue(buffer, type);
return result;

7.1.3. Jackson XML Maven Aspects

Jackson XML is not broken out into separate libraries as much as its JSON sibling. Jackson XML
annotations are housed in the same library as the marshalling/unmarshalling code.

Jackson Dependency for XML-specific Annotation and Marshalling Support

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
</dependency>

7.2. JAXB

JAXB is more particular about the definition of the Java class to be mapped. JAXB requires that the
root element of a document be defined with an @XmlRootElement annotation with an optional name

and namespace defined.

19

https://github.com/FasterXML/jackson-dataformat-xml/wiki/Jackson-XML-annotations
https://github.com/FasterXML/jackson-dataformat-xml/wiki/Jackson-XML-annotations
https://javaee.github.io/jaxb-v2/

JAXB Requires @XmlRootElement on Root Element of Document

com.sun.istack.SAXException2: unable to marshal type
"info.ejava.examples.svc.content.quotes.dto.QuoteDTO"
as an element because it is missing an @XmlRootElement annotation

Required @XmlRootElement supplied

import jakarta.xml.bind.annotation.XmlRootElement;

(name = "quote", namespace = "urn:ejava.svc-controllers.quotes")
public class QuoteDTO { ® @

@ default name is quoteDTO if not supplied

@ default to no namespace if not supplied

JAXB 4.x is no longer javax

JAXB 4.x used in Spring Boot 3/Spring 6 is no longer javax. The Java package
changed from javax.xml.bind to jakarta.xml.bind

import javax.xml.bind.annotation.XmlRootElement; //Spring Boot 2
import jakarta.xml.bind.annotation.XmlRootElement; //Spring Boot 3

7.2.1. Custom Type Adapters

JAXB has no default definitions for java.time classes and must be handled with custom adapter
code.

JAXB has no default mapping for java.time classes

INFO: No default constructor found on class java.time.lLocalDate
java.lang.NoSuchMethodException: java.time.lLocalDate.<init>()

This has always been an issue for Date formatting even before java.time and can easily be solved
with a custom adapter class that converts between a String and the unsupported type. We can
locate packaged solutions on the web, but it is helpful to get comfortable with the process on our
own.

We first create an adapter class that extends XmlAdapter<ValueType, BoundType>—where ValueType
is a type known to JAXB and BoundType is the type we are mapping. We can use
DateFormatter.ISO_LOCAL_DATE to marshal and unmarshal the LocalDate to/from text.

Example JAXB LocalDate Adapter

import jakarta.xml.bind.annotation.adapters.XmlAdapter;

20

https://www.programcreek.com/java-api-examples/?code=migesok%2Fjaxb-java-time-adapters%2Fjaxb-java-time-adapters-master%2Fsrc%2Ftest%2Fjava%2Fcom%2Fmigesok%2Fjaxb%2Fadapter%2Fjavatime%2Fintegration%2FJaxbAdaptersTest.java#

public static class LocalDateJaxbAdapter extends extends XmlAdapter<String, LocalDate>
{

public LocalDate unmarshal(String text) {
return text == null ? null : LocalDate.parse(text, DateTimeFormatter
.ISO_LOCAL_DATE);
}

public String marshal(LocalDate timestamp) {
return timestamp==null ? null : DateTimeFormatter.ISO_LOCAL_DATE.format
(timestamp);
}
}

We next annotate the Java property with @XmlJavaTypeAdapter, naming our adapter class.

Example Mapping Custom Type to Adapter for Class Property
import jakarta.xml.bind.annotation.adapters.XmlJavaTypeAdapter;

(XmlAccessType.FIELD) @
public class QuoteDTO {

(LocalDatelaxbAdapter.class) @
private LocalDate date;

@ custom adapter required for unsupported types

@ must manually set access to FIELD when annotating attributes

7.2.2. JAXB Initialization

There is no sharable, up-front initialization for JAXB. All configuration must be done on individual,
non-sharable JAXBContext objects. However, JAXB does have a package-wide annotation that the
other frameworks do not. The following example shows a package-info.java file that contains
annotations to be applied to every class in the same Java package.

JAXB Package Annotations
//package-info.java
(namespace = "urn:ejava.svc-controllers.quotes")

package info.ejava.examples.svc.content.quotes.dto;

import jakarta.xml.bind.annotation.XmlSchema;

The same feature could be used to globally apply adapters package-wide.

Example Mapping Custom Type to Adapter for Package

//package-info.java

21

(namespace = "urn:ejava.svc-controllers.quotes")
(type= LocalDate.class, value=JaxbTimeAdapters.
LocalDateJaxbAdapter.class)
package info.ejava.examples.svc.content.quotes.dto;

import jakarta.xml.bind.annotation.XmlSchema;
import jakarta.xml.bind.annotation.adapters.XmlJavaTypeAdapter;
import java.time.LocalDate;

7.2.3. JAXB Marshalling/Unmarshalling

JAXB Imports

import jakarta.xml.bind.JAXBContext;
import jakarta.xml.bind.JAXBException;
import jakarta.xml.bind.Marshaller;
import jakarta.xml.bind.Unmarshaller;

Marshalling/Unmarshalling starts out by constructing a JAXBContext scoped to handle the classes of
interest. This will include the classes explicitly named and the classes they reference. Therefore,
one would only need to create a JAXBContext by explicitly naming the input and return types of a
Web API method.

Marshall DTO using JAXB

public <T> String marshal(T object) throws JAXBException {
JAXBContext jbx = JAXBContext.newInstance(object.getClass()); @
Marshaller marshaller = jbx.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true); @

StringWriter buffer = new StringWriter();
marshaller.marshal(object, buffer);
return buffer.toString();

@ explicitly name primary classes of interest

@ adds newline and indentation formatting

Unmarshal DTO using JAXB

public <T> T unmarshal(Class<T> type, String buffer) throws JAXBException {
JAXBContext jbx = JAXBContext.newInstance(type);
Unmarshaller unmarshaller = jbx.createUnmarshaller();

ByteArrayInputStream bis = new ByteArrayInputStream(buffer.getBytes());

T result = (T) unmarshaller.unmarshal(bis);
return result;

22

7.2.4. JAXB Maven Aspects

Modules that define DTO classes only will require a direct dependency on the jakarta.xml-bind-api
library for annotations and interfaces.

<dependency>
<groupId>jakarta.xml.bind</groupIld>
<artifactId>jakarta.xml.bind-api</artifactId>
</dependency>

Modules marshalling/unmarshalling DTO classes using JAXB will require a dependency on the jaxb-
runtime artifact.

<dependency>
<groupId>org.glassfish.jaxb</groupld>
<artifactId>jaxb-runtime</artifactId>
</dependency>

Deprecated javax.xml.bind Dependencies

The jaxb-api artifact contains the deprecated javax.xml.bind interface types.

<dependency>
<groupId>javax.xml.bind</groupId>
<artifactId>jaxb-api</artifactId>
</dependency>

The following two artifacts contain the deprecated javax.xml.bind implementation
classes. jaxb-core contains visible utilities used map between Java and XML

o Schema. jaxb-impl is more geared towards runtime. Since both are needed, I am
not sure why there is not a dependency between one another to make that
automatic.
<dependency>

<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
</dependency>

23

Chapter 8. Configure Server-side Jackson

8.1. Dependencies

Jackson JSON will already be on the classpath when using spring-boot-web-starter. To also support
XML, make sure the server has an additional jackson-dataformat-xml dependency.

Server-side Dependency Required for Jackson XML Support

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
</dependency>

8.2. Configure ObjectMapper

Both XML and JSON mappers are instances of ObjectMapper. To configure their use in our
application —we can go one step higher and create a builder for jackson to use as its base. That is
all we need to know as long as we can configure them identically.

Jackson’s AutoConfiguration provides a layered approach to customizing the marshaller. One can
configure using:

* spring.jackson properties (e.g., spring.jackson.serialization.*)

* Jackson20bjectMapperBuilderCustomizer — a functional interface that will be passed a builder
pre-configured using properties

Assigning a high precedence order to the customizer will allow properties to flexibly override the
Java code configuration.

Server-side Jackson Builder @Bean Factory

import com.fasterxml.jackson.databind.SerializationFeature;

import
org.springframework.boot.autoconfiqure.jackson.Jackson20bjectMapperBuilderCustomizer;
import org.springframework.core.Ordered;

import org.springframework.core.annotation.Order;

public class QuotesApplication {
public static void main(String...args) {
SpringApplication.run(QuotesApplication.class, args);

}

(Ordered.HIGHEST_PRECEDENCE) @
public Jackson20bjectMapperBuilderCustomizer jacksonMapper() {

24

https://docs.spring.io/spring-boot/docs/current/reference/html/application-properties.html#application-properties.json.spring.jackson.constructor-detector
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/jackson/Jackson2ObjectMapperBuilderCustomizer.html

return (builder) -> { builder @
//spring.jackson.serialization.indent-output=true
.featuresToEnable(SerializationFeature.INDENT_OUTPUT)
//spring.jackson.serialization.write-dates-as-timestamps=false
.featuresToDisable(SerializationFeature.WRITE DATES_AS_TIMESTAMPS)

//spring.jackson.date-
format=info.ejava.examples.svc.content.quotes.dto.ISODateFormat
.dateFormat(new ISODateFormat());

};

@ returns a lambda function that is called with a Jackson20bjectMapperBuilder to customize.
Jackson uses this same definition for both XML and JSON mappers

@ highest order precedence applies this configuration first, then properties— allowing for
overrides using properties

8.3. Controller Properties

We can register what MediaTypes each method supports by adding a set of consumes and produces
properties to the @RequestMapping annotation in the controller. This is an array of MediaType values
(e.g., ["application/json", "application/xml"]) that the endpoint should either accept or provide in

aresponse.

Example Consumes and Produces Mapping

(path= QUOTES_PATH,

method= RequestMethod.POST,
consumes = {MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE

i
produces = {MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE
3]
public ResponseEntity<QuoteDT0> createQuote(QuoteDTO quote) {
QuoteDTO result = quotesService.createQuote(quote);
URI uri = ServletUriComponentsBuilder.fromCurrentRequestUri()
.replacePath(QUOTE_PATH)
.build(result.getld());
ResponseEntity<QuoteDT0> response = ResponseEntity.created(uri)
.body(result);
return response;
+

The Content-Type request header is matched with one of the types listed in consumes. This is a single
value and the following example uses an application/json Content-Type and the server uses our
Jackson JSON configuration and DTO mappings to turn the JSON string into a POJO.

Example POST of JSON Content

POST http://localhost:64702/api/quotes

25

sent: [Accept:"application/xml", Content-Type:"application/json", Content-Length:"108
I|]

{
"id" : 0,
"author" : "Tricia McMillan",
"text" : "Earth: Mostly Harmless",
"date" : "1991-05-11"

}

If there is a match between Content-Type and consumes, the provider will map the body contents to
the input type using the mappings we reviewed earlier. If we need more insight into the request
headers —we can change the method mapping to accept a RequestEntity and obtain the headers
from that object.

Example Alternative Content Mapping

(path= QUOTES_PATH,

method= RequestMethod.POST,

consumes={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE},

produces={MediaType.APPLICATION_JSON_VALUE, MediaType.APPLICATION_XML_VALUE})

// public ResponseEntity<QuoteDTO> createQuote(@RequestBody QuoteDTO quote) {

public ResponseEntity<QuoteDTO> createQuote(RequestEntity<QuoteDT0> request) {®

QuoteDTO quote = request.getBody();

log.info("CONTENT_TYPE={}", request.getHeaders().get(HttpHeaders.CONTENT_TYPE

));
log.info("ACCEPT={}", request.getHeaders().get(HttpHeaders.ACCEPT));
QuoteDTO result = quotesService.createQuote(quote);

@ injecting raw input RequestEntity versus input payload to inspect header properties

The log statements at the start of the methods output the following two lines with request header
information.

Example Header Output

QuotesController#createQuote:38 CONTENT_TYPE=[application/json;charset=UTF-8]
QuotesController#createQuote:39 ACCEPT=[application/xml]

Whatever the service returns (success or error), the Accept request header is matched with one of
the types listed in the produces. This is a list of N values listed in priority order. In the following
example, the client used an application/xml Accept header and the server converted it to XML using
our Jackson XML configuration and mappings to turn the POJO into an XML response.

Review: Original Request Headers

sent: [Accept:"application/xml", Content-Type:"application/json", Content-
Length:"108"]

26

Response Header and Payload

rcvd: [Location:"http://localhost:64702/api/quotes/1", Content-Type:"application/xml",
Transfer-Encoding: "chunked", Date:"Fri, 05 Jun 2020 19:44:25 GMT", Keep-
Alive:"timeout=60", Connection:"keep-alive"]
<quote xmlns="urn:ejava.svc-controllers.quotes" id="1">

<author xmlns="">Tricia McMillan</author>

<text xmlns="">Earth: Mostly Harmless</text>

<date xmlns="">1991-05-11</date>
</quote>

If there is no match between Content-Type and consumes, a 415/Unsupported Media Type error status
is returned. If there is no match between Accept and produces, a 406/Not Acceptable error status is
returned. Most of this content negotiation and data marshalling/unmarshalling is hidden from the
controller.

27

Chapter 9. Client Marshall Request Content

If we care about the exact format our POJO is marshalled to or the format the service returns, we
can no longer pass a naked POJO to the client library. We must wrap the POJO in a RequestEntity
and supply a set of headers with format specifications. The following shows an example using
RestTemplate.

RestTemplate Content Headers Example

RequestEntity<QuoteDT0> request = RequestEntity.post(quotesUrl) @
.contentType(contentType) @
.accept(acceptType) ®
.body(validQuote);

ResponseEntity<QuoteDT0> response = restTemplate.exchange(request, QuoteDT0.class);

@ create a POST request with client headers
@ express desired Content-Type for the request
® express Accept types for the response

The following example shows the request and reply information exchange for an application/json
Content-Type and Accept header.

Example JSON POST Request and Reply

POST http://localhost:49252/api/quotes, returned CREATED/207
sent: [Accept:"application/json", Content-Type:"application/json", Content-Length:"
146"]

{
"id" : 0,
"author" : "Zarquon",
“text" : "Whatever your tastes, Magrathea can cater for you. We are not proud.",
"date" : "1920-08-17"
}

rcvd: [Location:"http://localhost:49252/api/quotes/1", Content-Type:"application/json
", Transfer-Encoding:"chunked", Date:"Fri, 05 Jun 2020 20:17:35 GMT", Keep-Alive:
"timeout=60", Connection:"keep-alive"]

{
"id" 1,
"author" : "Zarquon",
"text" : "Whatever your tastes, Magrathea can cater for you. We are not proud.",
"date" : "1920-08-17"
¥

The following example shows the request and reply information exchange for an application/xml
Content-Type and Accept header.

Example XML POST Request and Reply

POST http://localhost:49252/api/quotes, returned CREATED/201

28

sent: [Accept:"application/xml", Content-Type:"application/xml", Content-Length:"290"]
<quote xmlns="urn:ejava.svc-controllers.quotes" id="0">

<author xmlns="">Humma Kavula</author>

<text xmlns="">In the beginning, the Universe was created. This has made a lot of
people very angry and been widely regarded as a bad move.</text>

<date xmlns="">1942-03-03</date>
</quote>

rcvd: [Location:"http://localhost:49252/api/quotes/4", Content-Type:"application/xml",
Transfer-Encoding: "chunked", Date:"Fri, 05 Jun 2020 20:17:35 GMT", Keep-
Alive:"timeout=60", Connection:"keep-alive"]
<quote xmlns="urn:ejava.svc-controllers.quotes" id="4">

<author xmlns="">Humma Kavula</author>

<text xmlns="">In the beginning, the Universe was created. This has made a lot of
people very angry and been widely regarded as a bad move.</text>

<date xmlns="">1942-03-03</date>
</quote>

29

Chapter 10. Client Filters

The runtime examples above showed HTTP traffic and marshalled payloads. That can be very
convenient for debugging purposes. There are two primary ways of examining marshalled
payloads.

Switch accepted Java type to String

Both our client and controller declare they expect a QuoteDT0.class to be the response. That
causes the provider to map the String into the desired type. If the client or controller declared
they expected a String.class, they would receive the raw payload to debug or later manually
parse using direct access to the unmarshalling code.

Add a filter

Both RestTemplate and WebClient accept filters in the request and response flow. RestTemplate
is easier and more capable to use because of its synchronous behavior. We can register a filter to
get called with the full request and response in plain view —with access to the body — using
RestTemplate. WebClient, with its asynchronous design has a separate request and response
flow with no easy access to the payload.

10.1. RestTemplate and RestClient

The following code provides an example of a filter that will work for the synchronous RestTemplate
and RestClient. It shows the steps taken to access the request and response payload. Note that
reading the body of a request or response is commonly a read-once restriction. The ability to read
the body multiple times will be taken care of within the @Bean factory method registering this filter.

Example RestTemplate/RestClient Logging Filter

import org.springframework.http.client.ClientHttpRequestExecution;
import org.springframework.http.client.ClientHttpRequestInterceptor;
import org.springframework.http.client.ClientHttpResponse;

public class RestTemplatelLoggingFilter implements ClientHttpRequestInterceptor {
public ClientHttpResponse intercept(HttpRequest request, byte[] body, ®
ClientHttpRequestExecution execution) throws IOException {
ClientHttpResponse response = execution.execute(request, body); @
HttpMethod method = request.getMethod();
URT uri = request.getURI();
HttpStatusCode status = response.getStatusCode();
String requestBody = new String(body);
String responseBody = this.readString(response.getBody());
//... log debug
return response;

}
private String readString(InputStream inputStream) { ... }

30

https://gitlab.com/ejava-javaee/ejava-springboot/-/blob/main/common/ejava-web-util/src/main/java/info/ejava/examples/common/web/RestTemplateLoggingFilter.java

@ interceptor has access to the client request and response

RestTemplateLoggingFilter is for all Synchronous Requests

The example class is called RestTemplatelLoggingFilter because RestTemplate was
(;) here first, the filter is used many times in many examples, and I did not want to
make the generalized name change at this time. It is specific to synchronous
requests, which includes RestClient.

The following code shows an example of a @Bean factory that creates RestTemplate instances
configured with the debug logging filter shown above.

Example @Bean Factory Registering RestTemplate Filter

ClientHttpRequestFactory requestFactory() {
return new SimpleClientHttpRequestFactory(); @
}

public RestTemplate restTemplate(RestTemplateBuilder builder,
ClientHttpRequestFactory requestFactory) { ®
return builder.requestFactory(
//used to read the streams twice -- so we can use the logging filter
()->new BufferingClientHttpRequestFactory(requestFactory)) @
.interceptors(new RestTemplateloggingFilter()) @
.build();

public RestClient restClient(RestClient.Builder builder,
ClientHttpRequestFactory requestFactory) { ®
return builder //requestFactory used to read stream twice
.requestFactory(new BufferingClientHttpRequestFactory(requestFactory)) @
.requestInterceptor(new RestTemplatelLoggingFilter()) @
.build();

@ the overall intent of this @Bean factory is to register the logging filter

@ must configure client with a buffer (BufferingClientHttpRequestFactory) for body to enable
multiple reads

@ providing a ClientRequestFactory to be forward-ready for SSL communications

10.2. WebClient

The following code shows an example request and response filter. They are independent and are
implemented using a Java 8 lambda function. You will notice that we have no easy access to the
request or response body.

31

Example WebClient Logging Filter
package info.ejava.examples.common.webflux;
import org.springframework.web.reactive.function.client.ExchangeFilterFunction;

public class WebClientLoggingFilter {
public static ExchangeFilterFunction requestFilter() {
return ExchangeFilterFunction.ofRequestProcessor((request) -> {
//access to
//request.method(),
//request.url(),
//request.headers()
return Mono.just(request);
1)
}
public static ExchangeFilterFunction responseFilter() {
return ExchangeFilterFunction.ofResponseProcessor((response) -> {
//access to
//response.statusCode()
//response.headers().asHttpHeaders())
return Mono.just(response);

1

The code below demonstrates how to register custom filters for injected WebClient instances.

Example @Bean Factory Registering WebClient Filters

@Bean
public WebClient webClient(WebClient.Builder builder) {
return builder
.filter(WebClientLoggingFilter.requestFilter())
.filter(WebClientLoggingFilter.responseFilter())
.build();

32

Chapter 11. Date/Time Lenient Parsing and
Formatting

In our quote example, we had an easy LocalDate to format and parse, but that even required a
custom adapter for JAXB. Integration of other time-based properties can get more involved as we
get into complete timestamps with timezone offsets. So lets try to address the issues here before we
complete the topic on content exchange.

The primary time-related issues we can encounter include:

Table 1. Potential Time-related Format Issues
Potential Issue Description

type not supported We have already encountered that with JAXB and solved using a
custom adapter. Each of the providers offer their own form of
adapter (or serializer/deserializer), so we have a good headstart on
how to solve the hard problems.

non-UTC ISO offset style There are at least four or more expressions of a timezone offset (Z,
supported +00, +0000, or +00:00) that could be used. Not all of them can be
parsed by each provider out-of-the-box.

offset versus extended There are more verbose styles (Z[UTC]) of expressing timezone
offset zone formatting offsets that include the Zoneld

fixed width or truncated Are all fields supplied at all times even when they are 0 (e.g., 1776-
07-04T700:00:00.100+00:00) or are values truncated to only include
significant values (e.g., '1776-07-04T00:00:00.1Z"). This mostly applies
to fractions of seconds.

We should always strive for:

e consistent (ISO) standard format to marshal time-related fields

* leniently parsing as many formats as possible

Let’s take a look at establishing an internal standard, determining which providers violate that
standard, how to adjust them to comply with our standard, and how to leniently parse many
formats with the Jackson parser since that will be our standard provider for the course.

11.1. Out of the Box Time-related Formatting

Out of the box, I found the providers marshalled 0ffsetDateTime and Date with the following format.
I provided an OffsetDateTime and Date timestamp with varying number of nanoseconds (123456789,
1, and 0 ns) and timezone UTC and -05:00) and the following table shows what was marshalled for
the DTO.

Table 2. Default Provider OffsetDateTime and Date Formats

33

Provi OffsetDateTime Trun Date Trun

der (v c

Jacks 1776-07-04700:00:00.1234567897 Yes 1776-07-04T00:00:00.123+00:00 No

on 1776-07-04T00:00:00.1Z 1776-07-04T00:00:00.100+00:00
1776-07-04T00:00:007 1776-07-04T00:00:00.000+00:00

1776-07-03719:00:00.123456789-05:00
1776-07-03719:00:00.1-05:00
1776-07-03719:00:00-05:00

JSON- 1776-07-04700:00:00.1234567897 Yes 1776-07-04T700:00:00.123Z[UTC] Yes
B 1776-07-04700:00:00.1Z 1776-07-04700:00:00.1Z[UTC]
1776-07-04700:00:007 1776-07-04T700:00:00Z[UTC]

1776-07-03719:00:00.123456789-05:00
1776-07-03719:00:00.1-05:00
1776-07-03719:00:00-05:00

JAXB (not supported/ custom adapter required) n/a 1776-07-03719:00:00.123-05:00 Yes/
1776-07-03719:00:00.100-05:00 No
1776-07-03719:00:00-05:00

Jackson and JSON-B — out of the box—use an ISO format that truncates nanoseconds and uses "Z"
and "+00:00" offset styles for java.time types. JAXB does not support java.time types. When a non-
UTC time is supplied, the time is expressed using the targeted offset. You will notice that Date is
always modified to be UTC.

Jackson Date format is a fixed length, no truncation, always expressed at UTC with an +HH:MM
expressed offset. JSON-B and JAXB Date formats truncate milliseconds/nanoseconds. JSON-B uses
extended timezone offset (Z[UTC]) and JAXB uses "+00:00" format. JAXB also always expresses the
Date in EST in my case.

11.2. Out of the Box Time-related Parsing

To cut down on our choices, I took a look at which providers out-of-the-box could parse the
different timezone offsets. To keep things sane, my detailed focus was limited to the Date field. The
table shows that each of the providers can parse the "Z" and "+00:00" offset format. They were also
able to process variable length formats when faced with less significant nanosecond cases.

Table 3. Default Can Parse Formats

Provider ISO Z ISO +00 ISO +0000 ISO +00:00 ISO Z[UTC]
Jackson Yes Yes Yes Yes No
JSON-B Yes No No Yes Yes
JAXB Yes No No Yes No

The testing results show that timezone expressions "Z" or "+00:00" format should be portable and
something to target as our marshalling format.

* Jackson - no output change

* JSON-B - requires modification

34

* JAXB - requires no change

11.3. JSON-B DATE_FORMAT Option

We can configure JSON-B time-related field output using a java.time format string. java.time
permits optional characters. java.text does not. The following expression is good enough for Date
output but will create a parser that is intolerant of varying length timestamps. For that reason, I
will not choose the type of option that locks formatting with parsing.

JSON-B global DATE_FORMAT Option

JsonbConfig config=new JsonbConfig()
.setProperty(JsonbConfig.DATE_FORMAT, "yyyy-MM-dd'T'HH:mm:ss[.SSSI[XXX]") @
.setProperty(JsonbConfig.FORMATTING, true);

builder = JsonbBuilder.create(config);

@ a fixed formatting and parsing candidate option rejected because of parsing intolerance

11.4. JSON-B Custom Serializer Option

A better JSON-B solution would be to create a serializer —independent of deserializer — that takes
care of the formatting.

Example JSON-B Default Serializer
public class DateJsonbSerializer implements JsonbSerializer<Date> {

public void serialize(Date date, JsonGenerator generator, SerializationContext

serializationContext) {
generator.write(DateTimeFormatter.ISO_INSTANT.format(date.toInstant()));

}

We add @JsonbTypeSerializer annotation to the field we need to customize and supply the class for
our custom serializer.

Example JSON-B Annotation Applied

(JsonbTimeSerializers.DateJsonbSerializer.class)
private Date date;

With the above annotation in place and the JsonConfig unmodified, we get output format we want
from JSON-B without impacting its built-in ability to parse various time formats.

* 1776-07-04T00:00:00.123Z
* 1776-07-04T00:00:00.100Z
* 1776-07-04T00:00:00Z

35

11.5. Jackson Lenient Parser

All those modifications shown so far are good, but we would also like to have lenient input
parsing — possibly more lenient than built into the providers. Jackson provides the ability to pass in
a SimpleDateFormat format string or an instance of class that extends DateFormat. SimpleDateFormat
does not make a good lenient parser, therefore I created a lenient parser that uses
DateTimeFormatter framework and plugged that into the DateFormat framework.

Example Custom DateFormat Class Implementing Lenient Parser

public class ISODateFormat extends DateFormat implements Cloneable {

public static final DateTimeFormatter UNMARSHALLER = new DateTimeFormatterBuilder
O

//. ..
.toFormatter();

public static final DateTimeFormatter MARSHALLER = DateTimeFormatter
.ISO_OFFSET_DATE_TIME;

public static final String MARSHAL_ISO_DATE_FORMAT = "yyyy-MM-
dd'T'HH:mm:ss[.SSS]IXXX";

public Date parse(String source, ParsePosition pos) {
OffsetDateTime odt = OffsetDateTime.parse(source, UNMARSHALLER);
pos.setIndex(source.length()-1);
return Date.from(odt.toInstant());

}
public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition pos)
{
ZonedDateTime zdt = ZonedDateTime.ofInstant(date.toInstant(), ZoneOffset.UTC);
MARSHALLER.formatTo(zdt, toAppendTo);
return toAppendTo;
}
public Object clone() {
return new ISODateFormat(); //we have no state to clone
}
}

I have built the lenient parser using the Java interface to DateTimeFormatter. It is designed to

* handle variable length time values
* different timezone offsets

+ a few different timezone offset expressions

DateTimeFormatter Lenient Parser Definition

public static final DateTimeFormatter UNMARSHALLER = new DateTimeFormatterBuilder()
.parseCaselnsensitive()

36

.append(DateTimeFormatter.ISO_LOCAL_DATE)

.appendLiteral('T")

.append(DateTimeFormatter.ISO_LOCAL_TIME)

.parselLenient()

.optionalStart().appendOffset("+HH", "Z").optionalEnd()

.optionalStart().appendOffset("+HH:mm", "Z").optionalEnd()

.optionalStart().appendOffset("+HHmm", "Z").optionalEnd()

.optionalStart().appendLiteral('[").parseCaseSensitive()
.appendZoneRegionId()
.appendLiteral(']").optionalEnd()

.parseDefaulting(ChronoField.OFFSET_SECONDS,)

.parseStrict()

.toFormatter();

An instance of my ISODateFormat class is then registered with the provider to use on all interfaces.

mapper = new Jackson20bjectMapperBuilder()
.featuresToEnable(SerializationFeature.INDENT _OUTPUT)
.featuresToDisable(SerializationFeature.WRITE DATES_AS_TIMESTAMPS)
.dateFormat(new ISODateFormat()) @
.createXmlMapper(false)
.build();

@ registering a global time formatter for Dates

In the server, we can add that same configuration option to our builder @Bean factory.

public Jackson20bjectMapperBuilderCustomizer jacksonMapper() {
return (builder) -> { builder
.featuresToEnable(SerializationFeature.INDENT_OUTPUT)
.featuresToDisable(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS)
.dateFormat(new ISODateFormat()); @
s

@ registering a global time formatter for Dates for JSON and XML

At this point we have the insights into time-related issues and knowledge of how we can correct.

37

Chapter 12. Summary

In this module we:

38

introduces the DTO pattern and contrasted it with the role of the Business Object
implemented a DTO class with several different types of fields

mapped our DTOs to/from a JSON and XML document using multiple providers
configured data mapping providers within our server

identified integration issues with time-related fields and learned how to create custom adapters
to help resolve issues

learned how to implement client filters

took a deeper dive into time-related formatting issues in content and ways to address

	API Data Formats
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Objectives

	Chapter 2. Pattern Data Transfer Object
	2.1. DTO Pattern Problem Space
	2.2. DTO Pattern Solution Space
	2.3. DTO Pattern Players

	Chapter 3. Sample DTO Class
	Chapter 4. Time/Date Detour
	4.1. Pre Java 8 Time
	4.2. java.time
	4.3. Date/Time Formatting
	4.4. Date/Time Exchange

	Chapter 5. Java Marshallers
	Chapter 6. JSON Content
	6.1. Jackson JSON
	6.2. JSON-B

	Chapter 7. XML Content
	7.1. Jackson XML
	7.2. JAXB

	Chapter 8. Configure Server-side Jackson
	8.1. Dependencies
	8.2. Configure ObjectMapper
	8.3. Controller Properties

	Chapter 9. Client Marshall Request Content
	Chapter 10. Client Filters
	10.1. RestTemplate and RestClient
	10.2. WebClient

	Chapter 11. Date/Time Lenient Parsing and Formatting
	11.1. Out of the Box Time-related Formatting
	11.2. Out of the Box Time-related Parsing
	11.3. JSON-B DATE_FORMAT Option
	11.4. JSON-B Custom Serializer Option
	11.5. Jackson Lenient Parser

	Chapter 12. Summary

